CONTENTS

PLANT

CORN SILAGE
- Silage Hybrid Selection .. 6
- Technology Traits .. 10
- Drought-Tolerant Hybrids .. 13
- Brown Mid-Rib Hybrids .. 13
- Floppy vs Vireous
- Endosperm Hybrids .. 14
- Hybrid Mixing .. 17
- Planting Date ... 17
- Row Spacing .. 18
- Planting Depth and Spacings 19
- Emergence Issues .. 20
- Plant Population .. 22
- Stand Evaluation .. 23
- Replant Considerations ... 24

ALFALFA
- Variety Selection ... 26
- Reduced-Lignen Alfalfa .. 27
- Lodging-Resistant Varieties 27
- Alfalfa Blends ... 28
- Fall Dormancy ... 30
- Winterhardness and Winter Survival 31
- Disease Considerations ... 31
- Insect Considerations ... 33
- Seed Coatings ... 33
- Pure Live Seed Counts ... 33
- Field Preparation .. 34
- Planting Depth ... 35
- Planting Dates ... 35
- Seeding Rate ... 36
- Hard Seed ... 36
- Using a Nurse Crop ... 37
- Weed Control at Stand Establishment 37
- Mixed Stands ... 38
- Over-Seeding Thin Stands 39
- Stand Evaluation ... 39

GROW

CORN SILAGE
- Key Growth Periods ... 42
- Growth & Development through the Vegetative Stages 52
- How Corn Develops ... 54
- Determining Corn Leaf Stages 56
- Scouting for Problems ... 57
- Wind/ hail Damage ... 60
- Fungicides ... 61
- Fertility .. 83
- Managing Weeds ... 86
- Impact of Moisture & Growing Environment 86

ALFALFA
- RFV Versus RFQ .. 95
- Harvest Maturity ... 96
- Harvest Maturity of Mixed Stands ...
- Methods to Monitor Harvest Maturity 96
- GDU Method ... 99
- Scissor Cutting Method .. 99
- PEAE ... 100
- Extending Harvest with Different Varieties 101
- Cutting Height ... 101
- Wheel Traffic Damage ... 102
- Harvest Timing .. 102
- Late-Fall Harvest in Northern Climates 103
- Biology of Alfalfa Wetting/Drying 104

HARVEST

GENERAL RECOMMENDATIONS
- Maturity and Moisture .. 84
- Length of Cut .. 84

CORN SILAGE
- High Chopping ... 85
- Kernel Processing ... 89
- Drought-Stressed Corn ... 90
- Frosted Corn ... 91

high-Moisture Corn
- Value of Cob and Husk .. 92
- Kernel Damage ... 94

ALFALFA
- RFV Versus RFQ .. 95
- Harvest Maturity ... 96
- Harvest Maturity of Mixed Stands ...
- Methods to Monitor Harvest Maturity 96
- GDU Method ... 99
- Scissor Cutting Method .. 99
- PEAE ... 100
- Extending Harvest with Different Varieties 101
- Cutting Height ... 101
- Wheel Traffic Damage ... 102
- Harvest Timing .. 102
- Late-Fall Harvest in Northern Climates 103
- Biology of Alfalfa Wetting/Drying 104

STORE

- Fermentation Process .. 106
- Shrink Versus Dry Matter Loss 110
- True Cost of Silage Dry Matter Loss 111
- Role of Yeast In Dry Matter Loss 113
- Forage Additives .. 115
- Inoculant Application .. 117
- VFA Profiles ... 117
- Protein Degradation .. 118
- Compaction and Sealing 119
- Managing Drive-Over Piles 123
- Baleage .. 123

FEED

- Feedout Management .. 125
- Feedout Safety .. 126
- Silage Storage Safety Reminders 127
- Silo Gas ... 127
- Nitrates ... 128
- Prussic Acid ... 128
- Field Molds ... 129
- Storage Molds .. 130
- Moving Silage ... 133

GOALS FOR STABLE SILAGE
- Low pH .. 134
- Temperature ... 134
- Proper Spectrum of Fermentation Acids 134
- Minimum Microbial/Fungal Activity of Feedout 135
- Minimal Protein Degradation 135
- Sampling Silages .. 135
- Silage Moisture Determination 136
- Analytical Errors .. 140
- NIRs Versus Wet Chemistry 140
- Proximate Analysis ... 142
- Detergent System ... 142
- Digestion Trials .. 143
- Energy Systems .. 144
- Digestion Rates ... 145

FORAGE FEEDING GUIDELINES
- Alfalfa ... 146
- High-Moisture Corn .. 147
- Corn Silage ... 149
- Kernel Damage ... 149
- Starch ... 150
- Protein ... 150
- Feed Delivery ... 152
- Common Forage Analysis Terminology 153
- Notes ... 159
INTRODUCTION

Ensiled forage and cereal crops, utilized in the feeding of livestock, have long been a fundamental link in the food chain. The ensiling of forage and grains allows for year-round availability of nutritious and palatable feed while utilizing a smaller land base than grazing. By their conversion into milk and meat products, ensiled feeds contribute to the nourishment of mankind.

With proper management, many different crops can be ensiled as livestock feed. However, when analyzed individually, various crops have differing potential to satisfy livestock nutritional requirements. For example, ensiled cereal grains like high-moisture corn are an excellent source of energy, while alfalfa is utilized primarily as a fiber and protein source.

Feed cost represents the largest single expenditure on most livestock operations. The production of high quality silages can help reduce the cost associated with feeding concentrates and supplements. For dairy and beef producers, whole-plant corn, high-moisture corn, alfalfa, cereal, and a variety of grass species are the silages of most economic significance. This manual will focus primarily on corn silage, high-moisture corn and alfalfa silages.

The Silage Zone® Manual has been developed to provide a concise source of relevant information on the five most important aspects of silage production: PLANT, GROW, HARVEST, STORE and FEED. A profitable silage program hinges on the success and interaction of each of these unique and important functions.
CORN

SILAGE HYBRID SELECTION

The five most important considerations when choosing a hybrid for silage or high-moisture corn have to be:

1. **Hybrid maturity**, 2. **desired technology traits** (e.g., herbicide resistance, corn boron, corn rootworm, bacterial wilt, and western bean cutworm), 3. **agronomic stability** (e.g., stress emergence, drought tolerance), 4. **inherent genetic resistance to yield robbing diseases such as leaf blight, rust, and ear rot** (e.g., fusarium, gibberella, diplodia) and proven yield potential (e.g., tonnage and starch), and 5. **proved yield potential** (e.g., tonnage and starch).

It is recommended to select silage hybrids that are 5-10 days longer than would be grown for grain because the heat units are not needed to mature the crop to typical grain (combining) maturities. This approach will help maximize silage yield and starch content. If maturity is too long for the growing zone, starch levels and total yield may be compromised by a frost incident.

Corn hybrid maturity ratings help growers select and compare hybrids, manage agronomic risk, and spread harvest timing. What is often misunderstood by growers is there is no industry standard for these ratings, so comparing hybrids across companies can be challenging. Hybrids within each individual seed company are typically rated for **CRM** (Comparative Relative Maturity) or **RM** (Relative Maturity) and in the U.S., this is reported in calendar days (e.g., 105-day hybrid). In Canada, hybrid maturity is reported as CHU or Corn Heat Units (e.g., 3100 CHU). Multiplying the CRM of a U.S. hybrid by 30 will approximate the CHU rating (e.g., 100-day CRM = 3000 CHU hybrid).

The most important word in the CRM acronym is “relative” because the values are based on comparisons within each seed company’s own hybrids, not necessarily against competitive hybrids. The most common approach to assigning a new grain CRM is to compare grain harvest maturity (20-22% kernel moisture) to other current commercial hybrids in the company lineup. This overall grain CRM is to compare grain harvest maturity (20-22% kernel moisture) to other current commercial hybrids in the company lineup. This overall grain CRM is a function of when the plant reaches physiological maturity (black layer or zero kernel milkline) and the dry down characteristics of the hybrid. With this approach, growers have a “relative” idea of how hybrids from the same company will advance through the various reproductive stages but it does not represent actual days from planting or emergence to harvest moisture. Some companies also report silage CRM based either on comparing whole-plant moisture to known silage check hybrids or regressing grain data to a silage kernel maturity standard such as 50% milk line.

Seed companies may conduct research trials comparing their approach to assigning maturity to competitors and make subtle adjustments to how they are reporting hybrid maturities. For example, if a seed company observes a disadvantage in harvested grain moisture levels, they will want to be sure they are aligning their maturity ratings as closely as possible to key competitors. It is important to read individual seed company footnotes to clearly understand the rating definitions. A grain hybrid will typically be given an overall CRM, a slicing CRM and physiological CRM (black layer or zero milkline). Physiological CRM can be particularly important for growers harvesting high-moisture corn or snaplage. Hybrids within the same genetic family, but containing different technology traits, will often be assigned the same maturity. However, depending upon level of insect infestation, these hybrids may differ by 2-3 days in maturity. For example, a hybrid with corn boron and rootworm resistance traits will likely be healthier under heavy insect infestation compared to the same base genetics lacking these technology traits.

Most seed companies also report average GDUs (growing degree units, also known as Growing Degree Days or Heat Units) to silking and GDUs to physiological maturity (kernels 30-34% moisture). There are different methods of calculating GDU heat unit accumulation, but the most common is the Base 50 Method. This method is based on the use of minimum (50°F) and maximum (86°F) temperatures for corn growth and development. GDUs can be used to predict crop development by totaling accumulated GDUs for a specific time period. Canada uses a different system called CHU (corn heat unit) to track accumulated heat units and define the maturity of corn hybrids. Just like relative maturity ratings, GDUs are also difficult to compare across seed companies. This can be due to the use of different formulas or the use of formulas not accounting for the length of time maximum or minimum temperatures were held, or the location of research stations used to generate GDU values.

Longer-season hybrids generally have more yield potential than shorter-season hybrids. GDU to physiological maturity (black layer) is probably the best overall indicator to determine if a hybrid can mature for grain harvest based on comparisons with long-term GDU accumulation records for that particular geography. The length of time for the grain to dry down to 20-22% harvest moisture can also vary by hybrid drydown rate (also typically given a relative score in most seed catalogs).

GROWING DEGREE UNIT REQUIREMENTS FOR GROWTH STAGES OF A 2700 GDU HYBRID

<table>
<thead>
<tr>
<th>GROWTH STAGE</th>
<th>PLANT CHARACTERISTICS</th>
<th>GDU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planting</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Two leaves fully emerged</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Four leaves fully emerged</td>
<td></td>
<td>345</td>
</tr>
<tr>
<td>Six leaves fully emerged (growing point above soil)</td>
<td></td>
<td>476</td>
</tr>
<tr>
<td>Eight leaves fully emerged (tassel beginning to develop)</td>
<td></td>
<td>610</td>
</tr>
<tr>
<td>Ten leaves fully emerged</td>
<td></td>
<td>740</td>
</tr>
<tr>
<td>Twelve leaves fully emerged (ear formation)</td>
<td></td>
<td>870</td>
</tr>
<tr>
<td>Fourteen leaves fully emerged (silks developing on ear)</td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>Sixteen leaves fully emerged (tip of tassel emerging)</td>
<td></td>
<td>1135</td>
</tr>
<tr>
<td>Silks emerging/collar shedding (plant at full height)</td>
<td></td>
<td>1400</td>
</tr>
<tr>
<td>Kernels in blister stage</td>
<td></td>
<td>1680</td>
</tr>
<tr>
<td>Kernels in dough stage</td>
<td></td>
<td>1925</td>
</tr>
<tr>
<td>Kernels denting</td>
<td></td>
<td>2190</td>
</tr>
<tr>
<td>Kernels dented</td>
<td></td>
<td>2450</td>
</tr>
<tr>
<td>Physiological maturity</td>
<td></td>
<td>2700</td>
</tr>
</tbody>
</table>

Adapted from the National Corn Handbook.
GDU (Growing Degree Unit) CALCULATION

GDU Base 50 =

\[\text{[daily maximum temp in degrees Fahrenheit} + \text{daily minimum temp in degrees Fahrenheit}] / 2 \] – 50

If the minimum temperature is below 50°F, then 50 is used as the minimum temperature.

Similarly, the upper limit is 86°F. If maximum temperature exceeds 86°F, then 86 is used as the maximum temperature.

Example: when daily high = 86°F and daily low = 65°F, then GDU = (86 + 65/2) – 50 = 25.5

CHU (Corn Heat Unit) CALCULATION

CHU =

\[[1.8 \times \text{(daily minimum temperature in °C} – 4.0) + 3.3 \times \text{(daily maximum temperature in °C} – 10.0) – 0.084 \times \text{(daily maximum temperature in °C} – 10.0)] / 2 \]

As with GDU, this calculation assumes no corn growth with night temperatures below 4.4°C or daytime temperatures below 10°C and an upper threshold of 30°C

An approximate conversion between the two systems is to multiply the CHU day length of a hybrid by 50 to approximate maturity in terms of CHU.

Example: a 100-day CRM hybrid is approximately a 3,000 CHU hybrid

Some growers like to reduce risk by spreading the pollination period between hybrids. However, planting hybrids with different CRM ratings (e.g., 105 day) may not always provide the desired effect because they could both have similar GDU to silking. It is best to consult GDU to silk ratings to see the relative difference in timing of pollen shed and silk emergence. Remember that it is difficult to compare GDU to silking dates across companies. To help determine if a new hybrid will adapt to local conditions, compare the silking to a well-known hybrid (from the same company). Research shows that earlier silking hybrids generally move north of their adapted zone and more readily adapt to higher elevations. If moved too far north or in elevation, late silking hybrids may not reach physiological maturity before first frost, or may have reduced grain yield potential if abnormally late silking exposes the crop to cooler temperatures during grain fill.

The best source of information on hybrid maturity is the local Pioneer sales professional or agronomist. They will certainly know their hybrid lineup and have likely seen competitors in various plots to help put company differences in perspective.

For silage producers, a focus on the three important traits of agronomic stability (over diverse growing seasons), yield and starch content will help in sorting through the reams of silage hybrid data. University of Wisconsin research shows that silage tonnage (dry matter yield) is primarily a function of:

1) harvest timing,
2) hybrid genetics (plant height and starch yield) and
3) planting date.

Harvest timing is important because grain (starch) typically contributes about half of the dry matter yield (and 65% of the energy) and given the value of grain, must factor heavily in silage hybrid decisions.

Neutral detergent fiber digestibility (NDFD) tends to be the measurement of most interest, especially among nutritionists. However, while small NDFD differences do exist among conventional silage hybrids (2-3 percentage points), the biggest influence over NDFD is the growing environment that plants receive during the vegetative growth stage (see more in the GROW section). Pioneer researchers have concluded that growing environment is three-times more influential over fiber digestibility than genetics. This is why the seed industry has resorted to the use of brown mid-rib (BMR) genetics as the only practical approach to significantly improve NDFD. When evaluating NDFD, be sure you note the incubation time point (e.g. 24 vs. 30 vs. 48-hour) when comparing values from different laboratory reports.

Some growers may also be interested in evaluating hybrids based on indexes such as Net Energy of Lactation (NE-L) or University of Wisconsin’s “Milk per Ton” and “Milk per Acre.” While they can be useful in ranking hybrids, it still makes sense to evaluate the absolute value of the traits (yield, starch, fiber digestibility) that influence these index values. Sharing the relative importance of key silage traits with seed representatives can help them better sort through their list to suggest a suitable hybrid rather than selecting a hybrid based on composite index values where input traits may be weighted differently than desired by an individual grower.

Traits like crude protein and oil content are less important simply because there are minimal genetic differences between these traits among commercial hybrids.

Sugar is another trait found on some plot reports. Difference in sugar content is primarily due to maturity differences among hybrid entries. Sugars are translocated and deposited in the kernel as the plant matures, and those hybrids higher in sugar are typically less mature as evidenced by higher-plant leaf moisture and lower stalk content. Fiber values such as the quantity of acid detergent fiber (ADF), neutral detergent fiber (NDF) and undigested neutral detergent fiber (uNDF) are important in total ration formulation. However, their importance in evaluating hybrid genetics is minimal because their absolute values are impacted from dilution by stalk and starch.

Some nutritionists also request ruminal starch digestibility values on silage plot reports. Most university and seed company silage hybrid programs do not provide starch digestibility values. This is understandable given the fact that starch digestibility, as influenced by the amount of hard or vesticule starch in the kernel, is a trait also lacking in significant variation among commercially available hybrids. While differences clearly exist in the amount of visous starch among hybrids harvested at grain (combing) maturity as evidenced by differences in test weights, there are minimal differences in the amount of vesticule starch among corn silage hybrids harvested when kernels are pre-blacklayer maturity (e.g. 1/2-3/4 milk line). Furthermore, the length of time silage kernels are exposed to the fermentation environment influences ruminal starch digestibility. While starch digestibility is an important measurement for nutritionists switching from long-stored corn silage to new-crop silage, it is not a trait that should be given consideration when selecting silage hybrid genetics.

Research by corn breeders suggests that to be 95% confident in selecting the best hybrid for silage yield or nutritional traits, a minimum of 20 direct, side-by-side comparisons (in the same plot) are recommended. Hybrids should also be compared within the same maturity, seed treatment, technology segment, planting population and chop height. While it is also desirable to compare hybrids in multiple environments and growing seasons to better understand hybrid stability when exposed to extremes in growing conditions. Data from a single plot, while certainly of interest to growers wanting to know how a hybrid may perform on their farm, is essentially meaningless from a statistical perspective. This is due to the possibility of a “one-year wonder,” some university silage programs also show multiple year data if the hybrid was entered in their plots more than one year.

Most university silage plot programs offer statistical parameters to help evaluate the robustness of the comparison data. Typically this is in the form of an average (mean) value for the trait and a Least Significant Difference (LSD) which is used to determine if the hybrids are statistically (rather than just numerically) different. If the difference between the two hybrid values are equal to or greater than the LSD value
It is best to secure as much information as possible on the performance of a silage hybrid. Do not be satisfied with catalog scores (e.g., 1-9). Seed companies serious about silage will be able to provide absolute values for important silage traits compared against their own hybrids as well as competitors. Finally, be cautious about putting too much credence in “beauty-pageant” forage contests where yield is not considered and there is no way to ensure that all entries were chopped at the same height.

Corn Traits and Technology (as of July 2016)

<table>
<thead>
<tr>
<th>Technology Segment Identifiers</th>
<th>Corn Technology Traits</th>
<th>Insect Efficacy Levels</th>
<th>Herbicide Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>E = Excellent</td>
<td>V = Very Good</td>
<td>G = Good</td>
<td>M = Moderate</td>
</tr>
<tr>
<td>RR2 Roundup Ready® Corn 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LL LibertyLink</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VYHR, LL, RR2 Optimum’ Leptra’ (Corn Borer/Corn Earworm)***</td>
<td>E E E E E E V E E V</td>
<td>E E</td>
<td></td>
</tr>
<tr>
<td>CHR, LL, RR2 Optimum’ TRsect’, LibertyLink, Roundup Ready Corn 2 (Corn Borer/Rootworm)***</td>
<td>E M M E V E V E E V</td>
<td>E E</td>
<td></td>
</tr>
<tr>
<td>YXR, LL, RR2 Optimum’ Intrasect’ Xtra, LibertyLink, Roundup Ready Corn 2 (Corn Borer/Rootworm)</td>
<td>E G M E V E V E E G</td>
<td>E E</td>
<td></td>
</tr>
<tr>
<td>CYXR, LL, RR2 Optimum’ Intrasect’ Xtra, LibertyLink, Roundup Ready Corn 2 (Corn Borer/Rootworm)**</td>
<td>E G M E V E V E E G</td>
<td>E E</td>
<td></td>
</tr>
<tr>
<td>AM, LL, RR2 Optimum’ AcreMax’, LibertyLink, Roundup Ready Corn 2 (Corn Borer)</td>
<td>E G M E V E V E E G</td>
<td>E E</td>
<td></td>
</tr>
<tr>
<td>AM1, LL, RR2 Optimum’ AcreMax’ 1, LibertyLink, Roundup Ready Corn 2 (Corn Borer/Rootworm)</td>
<td>E M M E V E V E E G</td>
<td>E E</td>
<td></td>
</tr>
<tr>
<td>AML, LL, RR2 Optimum’ AcreMax’ Leptra’, LibertyLink, Roundup Ready Corn 2 (Corn Borer/Corn Earworm)***</td>
<td>E E E E E E V E E V</td>
<td>E E</td>
<td></td>
</tr>
<tr>
<td>AMX, LL, RR2 Optimum’ AcreMax’ Xtra, LibertyLink, Roundup Ready Corn 2 (Corn Borer/Rootworm)</td>
<td>E G M E V E V E E G</td>
<td>E E</td>
<td></td>
</tr>
<tr>
<td>AMXT, LL, RR2 Optimum’ AcreMax’ Xtrema, LibertyLink, Roundup Ready Corn 2 (Corn Borer/Rootworm)**</td>
<td>E G M E V E V E E G</td>
<td>E E</td>
<td></td>
</tr>
<tr>
<td>AMXL, RR2 Optimum’ AcreMax’ TRsect’, LibertyLink, Roundup Ready Corn 2 (Corn Borer/Rootworm)**</td>
<td>E G M E V E V E E G</td>
<td>E E</td>
<td></td>
</tr>
<tr>
<td>AMRW, LL, RR2 Optimum’ AcreMax’ RW, LibertyLink, Roundup Ready Corn 2 (Corn Rootworm)</td>
<td></td>
<td>E V E E E</td>
<td></td>
</tr>
<tr>
<td>HX1, LL, RR2 Hercules’ I, LibertyLink, Roundup Ready Corn 2 (Corn Borer)</td>
<td>E M M E V E V E E E</td>
<td>E E</td>
<td></td>
</tr>
<tr>
<td>HXK, LL, RR2 Hercules’ XTRA, LibertyLink, Roundup Ready Corn 2 (Corn Borer/Rootworm)</td>
<td>E M M E V E V E E E</td>
<td>E E</td>
<td></td>
</tr>
</tbody>
</table>
DROUGHT-TOLERANT HYBRIDS

The seed industry has recently introduced transgenic and conventionally-bred hybrids that exhibit increased tolerance to the lack of water. Drought tolerance is a complex trait involving multiple genes acting at different times of plant development. The approach to improving drought tolerance has been by reducing the size of the plant’s leaf surface pores (stomata) to reduce leaf rolling, improving the efficiency of root systems and improving synchronization of pollination and silking even under high heat or water stress conditions. Modern corn hybrid genetics have improved corn grain yield from 3 bushels per acre per inch of water in the early 1900s to 10 bushels per acre per inch of water in the 1990s. Drought-tolerant hybrids have made even greater gains, yielding 5 to 7 percent better than other leading hybrids in water-limited environments. These newer drought-tolerant hybrids have also been shown to perform equally well in normal growing conditions so there is no yield penalty for planting these hybrids in fields that may only occasionally experience water stress. Planting drought-tolerant hybrids for silage typically results in higher biomass and stalk yields.

DROUGHT TOLERANT PHENOTYPES

MINIMAL LEAF FIRING

MINIMAL LEAF ROLLING

DROUGHT RESISTANT HYBRIDS

Brown mid-rib (BMR) corn silage hybrids have been on the market for nearly two decades. BMR mutants were first discovered in 1924 at the University of Minnesota and BMR genes have been introduced into sorghum, sudangrass, millet and corn. BMR derives the name from plants displaying reddish-orange coloration on the underside of the leaf mid-vein (mid-rib) starting at the 4-6 leaf stage. BMR hybrids will exhibit lower lignin and improved NDFD but the reduced lignin content makes standability an issue for BMR hybrids regenerating their use for silage only. Early BMR hybrids were plagued with agronomic and drought-tolerance issues, and had reduced silage yield (10-30%) compared to non-BMR silage hybrids. Modern
BMR hybrids have much improved agronomics and disease resistance and often produce yields of total dry matter and starch very comparable to non-BMR silage hybrids. BMR corn typically has 20-30% less lignin and reduced cross-linkages with other cell wall carbohydrates. Lignin is an indigestible component of fiber. Each gram of acid detergent lignin (ADL) binds with 1.4 grams of fiber (hemicellulose) and renders the complex indigestible by mammalian enzymes. There are four BMR mutants and being a single gene recessive trait, they must be in both parents. The bm1 and bm3 genes are most common in the industry. In the pathway in which plants convert phenylalanine to lignin, there are slight differences in how the two genes down-regulate enzymes involved in lignification. The bm3 gene confers reduced COMT (caffeic o-methyl tranferase) activity and the bm1 gene confers reduced CAD (cinnamyl alcohol dehydrogenase) activity. In a 2015 trial conducted by Miner Institute, there were no statistically differences in lignin content or NDFD between two different hybrids containing bm1 and bm3 genes. The reduced lignin in BMR silage results in a 4-10 point higher NDFD-24 hour value when analyzed in the lab. In the lab, the BMR sample cannot escape the analysis vessel. But in the cow, the net effect is a faster rate of NDF digestion with the more fragile BMR fiber exiting the rumen much quicker than non-BMR corn silage. This typically results in higher intakes of the entire diet (especially important in transition and early-lactation cows) which usually drives higher milk yields. The improved rate of digestion and feed passage allows for higher forage diets, improved rumen health and the potential to remove some supplemental energy or protein (from higher rumen microbial production) from the diet. The higher starch content in certain BMR hybrids will also effect NDF digestion among floury endosperm genetics. This is referencing the amount of floury (also called soft or dent) endosperm versus vitreous (also called glassy, hard or flinty) endosperm found in the kernel. In fact, flint hybrids can be found in Europe and South America where growing conditions favor their early plant vigor but they are not grown in North America because of their poor yield compared to dent hybrids. Flory endosperm contains the white-colored starch granules found in the center of kernels grown in North America. Floury endosperm is more loosely bound in a starch: zein protein (prolamin) matrix. Dent corn derives its name because this softer starch “dents in” at the top of the kernel as it matures. Vitreous starch is the higher-density, yellowish-colored starch granules found on the outer edges of a mature kernel which are more tightly bound in a starch; protein matrix. Popcorn or Indian corn would be considered nearly 100 percent vitreous starch. Vitreous starch in dent kernels becomes more prominent as the kernel approaches dry grain harvest maturity (post black layer) and can vary significantly in NDFD from year to year (or field to field) depending upon the unique growing environment. As with non-BMR hybrids, attention to kernel damage during harvest is critical to assure maximum ruminal starch availability. BMR silage also tends to be more prone to aerobic stability problems (heating) due to extremely high levels of sucrose in the stalk. This tendency for heating at feed-out can be significantly reduced with the use of inoculants containing Lactobacillus buchneri.

FLOURY VERSUS VITREOUS ENDSOMPER HYBRIDS

There has been an explosion of interest among silage growers about the differences in the type of kernel starch found in hybrids due to some seed companies suggesting higher starch digestion among floury endosperm genetics. This is referencing the amount of floury (also called soft or dent) endosperm versus vitreous (also called glassy, hard or flinty) endosperm found in the kernel. In fact, flint hybrids can be found in Europe and South America where growing conditions favor their early plant vigor but they are not grown in North America because of their poor yield compared to dent hybrids. Flory endosperm contains the white-colored starch granules found in the center of kernels grown in North America. Floury endosperm is more loosely bound in a starch: zein protein (prolamin) matrix. Dent corn derives its name because this softer starch “dents in” at the top of the kernel as it matures. Vitreous starch is the higher-density, yellowish-colored starch granules found on the outer edges of a mature kernel which are more tightly bound in a starch; protein matrix. Popcorn or Indian corn would be considered nearly 100 percent vitreous starch. Vitreous starch in dent kernels becomes more prominent as the kernel approaches dry grain harvest maturity (post black layer) and can vary significantly in NDFD from year to year (or field to field) depending upon the unique growing environment. As with non-BMR hybrids, attention to kernel damage during harvest is critical to assure maximum ruminal starch availability. BMR silage also tends to be more prone to aerobic stability problems (heating) due to extremely high levels of sucrose in the stalk. This tendency for heating at feed-out can be significantly reduced with the use of inoculants containing Lactobacillus buchneri.

CORN KERNEL PHYSIOLOGY

This is a post-blacklayer (combining maturity) kernel. This is NOT what the kernel looks like at silage or HMC maturity.

Floury Endosperm “dent”

Starch granules are surrounded by hydrophobic proteins (prolamin or zein) which repel water to prevent premature starch hydration that could interfere with germination.

Vitreous Endosperm “flinty”

Floury versus vitreous endosperm hybrids

As with non-BMR hybrids, attention to kernel damage during harvest is critical to assure maximum ruminal starch availability. BMR silage also tends to be more prone to aerobic stability problems (heating) due to extremely high levels of sucrose in the stalk. This tendency for heating at feed-out can be significantly reduced with the use of inoculants containing Lactobacillus buchneri.

CORN DENSITY AND STARCH VITREOUS COMPARED

Research comparing the starch digestibility of floury genetics versus flinty hybrids has certainly furthered the understanding of the mechanisms of starch digestion. However, caution is needed when extrapolating these “bookend” comparisons to what producers will observe from high-yielding, commercially-available hybrids.
According to Ohio State researchers, the level of kernel vitreousness between hybrids has little, if any, impact on the digestibility of starch in (R5) kernels when fed as fermented corn silage or high-moisture corn.

Furthermore, much of the claims of companies promoting floury endosperm neglect to present yield data and also focus only on ruminal digestion, when total tract (ruminal and intestinal) starch digestibility typically exceeds 96 percent for adequately processed and fermented corn silage or high-moisture corn.

It is well proven that while starch digestibility differences between hybrids at silage maturity do not exist, the ruminal starch digestibility in all ensiled hybrids does increase over time in fermented storage. Microbial activity during fermentation and the chemical action of various fermentation end-products (acids, yeast-generated alcohol) alter the kernel storage proteins, removing most of the negative effects of zeins (prolamins) on starch digestibility. This is evidenced by a strong positive relationship between the level of soluble protein (or ammonia nitrogen) from the degraded kernel proteins in corn grain and the improved ruminal starch digestibility of corn grain over time in fermented storage. Typically about 70% of the starch will be ruminally degraded in corn silage and will increase by about 2% units per month, stabilizing after about 6 months of fermented storage. If properly processed, what is not digested in the rumen will be digested in the intestines. Validation of the extent of starch digestion can be further accomplished by collecting fecal samples from 10-12 cows and submitting to a lab for fecal starch analysis. The goal is to have less than 3-5% starch in faces and most herds are below this level despite growing hybrids that are not advertised as floury.

If corn kernels are fed fully mature and not fermented, as is the case of dry corn grain, research from France with true floury hybrids indicates that fine-grinding can remove the negative impact of vitreous endosperm on total tract starch digestibility. This is something nutritionists have learned simply by watching cows (and manure) and is the reason for feeding fine-ground dry corn (600 to 1,000 microns) rather than rolled or cracked corn to high-producing cows.

DuPont Pioneer has conducted several studies investigating the ruminal digestion of Pioneer® brand hybrids grown in the same plot as hybrids from companies claiming higher starch digestibility. When averaged across hybrids, no statistical difference in 7-hour in vitro ruminal starch digestion was detected between kernels from five Pioneer® brand hybrids and two floury hybrids harvested at either half-milk (R 5.5, silage) maturity or black layer (full kernel maturity).

In another Pioneer field study, five Pioneer® brand commercial dent hybrids were harvested at three stages of maturity (1/2 milk line to black layer maturity). In contrast with some previously published research:

1) prolamin content did not increase as kernels matured,
2) prolamin and prolamin/starch ratio were only weakly correlated with 7-hour in vitro ruminal starch digestion (R² = 0.22-0.30) and
3) prolamin content increased as field nitrogen fertility and kernel protein content increased (R² > 0.60).

For corn fed as fermented corn silage or high-moisture corn, more vitreous hybrids with large kernels (reduced endosperm) appear preferable. This is because they typically have higher grain yields, and the process of fermentation (protein matrix solubilization and acid hydrolysis) will minimize most of the adverse effects of vitreousness.

It appears counterproductive to recommend any hybrid selection pressure for floury endosperm given these facts:

1) seed companies typically do not have data on the level of vitreousness at silage or high-moisture grain harvest maturity and data from combine-maturity corn is not valid,
2) vitreousness of grain harvested at silage maturity is considerably lower than for dry grain,
3) adverse effects of vitreousness in dry, unfermented corn can be largely alleviated by fine-grinding,
4) fermentation significantly reduces the impact of vitreousness, and
5) selecting hybrids for reduced vitreousness likely depresses grain yields and possibly causes more ear mold.

Rather, it seems more prudent to select sugar hybrids for traits where there are significant genetic differences such as agronomic stability, tonnage, grain (starch) yield, and trait packages necessary to protect yield against specific pest and weed challenges.

Hybrid mixing

The concept of planting a mix of hybrids with differing maturity in the same field has been proposed as an approach to extend pollination periods and reduce inbreeding depression resulting in higher grain (starch) and grain protein yields. Most of this research has been done with alternating strips of two hybrids, though some trials blended a small percentage of a second hybrid in the seed hopper so there were plants of that hybrid scattered throughout the field. However, the positive results seen in “within row” or in narrow “side-by-side” strips has not proven repeatable in numerous university studies conducted at an entire field level. While the use of multiple hybrids across an entire farm is recommended to spread agronomic risk, there appears to be no justification, given current knowledge, for mixing hybrids in the same field. As technology advances, with planters capable of changing hybrids on the go, there will likely be potential for the concept of planting different hybrids in a single field; if that field contains distinctly different hybrids.

Mixing two or more hybrids in a field is not the same as planting a “silage blend.” Most silage blends are a mix of several unnamed hybrids, often ones that the seed company for one reason or another chose not to sell as individual hybrids. Most silage blends don’t state the names of the individual hybrids comprising the blend. How good a silage blend performs depends on the hybrids in the blend. The fact is that seed companies can (and often do) change the makeup of hybrids in the blend from year to year. Just because a silage blend did well one year doesn’t mean it will be the same hybrids in the blend the next year even if labeled as the same maturity sold by the same seed company. The fact that many silage blends are usually less expensive, relying on a silage blend does have inherent risks.

There has also been recent interest in mixing brown mid-rib (BMR) and non-BMR hybrids in the same field. This has been tried as an approach to improve standability of BMR in the case of strong wind events. However, the idea has not been embraced by most agronomists due to the complexity of matching pollination/silage dates. Furthermore, diluting the higher NDFD and lower UNDF advantage BMR with a non-BMR hybrid may not make the best use of BMR genetics, particularly when further diluted with other dietary ingredients. By the time the cow consumes the mixed silage diet, intakes among fresh and high-production cows may not reach levels typical of 100% BMR-based diets.
provide critical protection in stressful environments. Cool, wet soils are more conducive to seedling disease development and also delay emergence and plant development. These delays keep seedlings from outgrowing damage by soil borne diseases that attack seeds and seedlings. Seed treatments are extremely beneficial, but are generally limited to about two weeks of protection. If cool, wet conditions persist longer than two to three weeks, crop stands are at risk.

Growers should choose hybrids based on the local growing season and specific field environment. Cool temperatures restrict root growth and nutrient uptake. Banding fertilizer can help increase nutrient availability and early growth. Shallow planting may provide a warmer environment for seeds when planting early, but always plant at least 1.5 inches deep for normal plant development. The yield of a particular corn hybrid is greatly influenced by stand density and uniformity. Planter maintenance and effectiveness are certainly important but so are seedbed conditions and the genetic potential of the hybrid to emerge from cold, wet soils. The trend towards reduced tillage and the accompanying higher infeld residues often results in stover seedbed drying and colder soil temperatures. This can cause seed emergence stress even in Southern and Western corn growing regions. The guideline for planting corn is to wait until soil temperatures are at least 50°F. Corn is a warm season plant with over 85°F as the optimum temperature for emergence. It is not unusual for early planted corn to take three weeks or longer to emerge if planted into 50° to 55°F soil temperatures compared to less than a week if planted into 70°F soils.

University of Wisconsin research conducted in 2003-2012 with full-season hybrids (104-108 RM) indicates that the planting date window for silage is slightly longer than the same hybrid planted for grain and soil temperatures can be delayed, growers can stick with full-season hybrids longer than if corn will be used for silage rather than grain. While the number of leaves, the size of the stalk, shank and husk is largely genetically controlled, silage starch content does tend to decrease with later planting dates which can reduce milk per acre (quality + yield). Digestibility of stover does not seem to be significantly affected by planting date. Earlier research at the University of Wisconsin showed that corn silage planted in Wisconsin between April 18 and May 25 produced about 18,000 lbs of milk per acre. This started to decline significantly after May 15 and by June 1, 2,79 lbs of milk per acre was lost with each day of delayed planting.

Twin rows accounted for less than 0.2% of the 2009 corn crop, yet the practice is gaining interest as a way to potentially increase yields without the machinery cost associated with switching to narrow row production. Pioneer twin row research conducted in 2010 on 179 paired comparisons across 31 locations showed no overall grain yield advantage to twin rows over 30-inch rows. This supports the accumulated body of University and industry research concluding that a transition from 30-inch rows to twin rows would not provide a wide-scale yield benefit across the majority of the Corn Belt. There is also a lack of evidence that new hybrids and higher plant populations will broadly favor twin row production in the near future.

PLANTING DEPTH AND SPACINGS

Plants corn to a depth of 1½-2 inches is optimal for nodal root development. Two inches is best under normal conditions; 1½ inches may be favorable when planting early into cool soils but never plant corn shallower than 1½ inches. Planting depth can easily be determined after seedling emergence. The nodal root area (crown or growing point) typically develops about ¾ of an inch beneath the soil surface regardless of the seed depth. Measure the mesocotyl length (the area between the seed and crown or growing point), then add ¾ inch to determine the planting depth.

Symptoms of irregular planting depth include uneven emergence, non-uniform mesocotyl length and varying plant height. It is recommended to set the planting depth in the field, while the planter is at full operating speed to check for good seed-to-soil contact. Slowing the planting speed can help improve uniform planting depths. Pioneer research studies have shown that grain yields, averaged across multiple locations and hybrids, were 13% greater for 1.5 inch plantings than the 0.5-inch planting depth. Much of the yield decrease was attributed to a reduced final stand count from more “runts” in the shallow planted plots.

Rootless Corn Syndrome

Corn planted too shallow is unable to uptake water and nutrients through the roots. They also can develop a condition called “rootless or flabby corn syndrome” where the root tip desiccates prior to reaching soil moisture. The aboveground appearance of the corn plant may appear fairly normal until a windy day when plants fall over due to the lack of...
nodal root development in the dry soil. Shallow planting can also expose corn seedlings to salt injury from fertilizer and herbicide residues increasing the potential for herbicide injury.

Uniform plant spacing helps maximize yield. Pioneer studies show that individual plant yield reaches a maximum level when plants are within 2-3 inches of perfect equidistant spacing. Types of non-uniform plant spacing include misplaced plants (definitely reduces yield), skips (yield of adjacent plants will increase, but not enough to compensate for the missing plant) and doubles (may increase yield slightly if stand is below optimum). Yield of doubled plants as well as adjacent plants will decrease, but the yield of the extra plant will generally compensate for this reduction.

EMERGENCE ISSUES

Corn is a warm season crop. Optimal temperature for emergence is 85º-90ºF, so it is almost always under some degree of cold stress. Corn will germinate at 46ºF but the common thumb-rule is to delay planting until soil temperatures reach 50°F because prolonged exposure to soil temperatures below this promotes seed deterioration and seedling disease. Cold imbibition causes physical damage making seeds more prone to attack by insects and disease. Extended cold delays emergence and further damages seeds, and the surviving seedlings are likely to produce runts.

It takes a coordinated effort for proper emergence to occur so that the coleoptile (pointed protective sheath covering the emerging shoot) is pushed above the soil surface allowing the first leaf to unfurl. This sequence of events can be compromised if the seed absorbs (imbibes) water less than 50° to 55°F. This is termed imbibitional chilling damage where brittle cell membranes can rupture causing abnormalities such as corkscrew or fused coleoptiles. This is further aggravated by leaked cell contents inviting pathogen invasion.

The potential for cold water damage falls as seedlings emerge and if initial imbibition occurred above 50°F. This partially explains why early planted corn, followed by warm weather, tends to emerge better than later planted corn emerging into cold weather or

WHAT IS THE IMPACT OF UNEVEN EMERGENCE ON YIELD?

<table>
<thead>
<tr>
<th>% of Maximum Yield Potential</th>
<th>Relative Contribution to Total Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Emergence</td>
<td>Medium (1 1/2 week delay)</td>
</tr>
<tr>
<td>Early: 85%</td>
<td>Medium: 15%</td>
</tr>
<tr>
<td>Medium: 61%</td>
<td>Medium: 39%</td>
</tr>
<tr>
<td>Late: 96%</td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td>95%</td>
</tr>
<tr>
<td>94%</td>
<td>88%</td>
</tr>
<tr>
<td>79%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Data from Carter, P.R., E.D. Nafziger, and J.G. Lauer, Uneven emergence in corn, North Central Regional Extension Publication No. 344
It is important to target plant population based on individual hybrid recommendations. Typical seed corn germination is about 95%. Overplanting by at least 5% can help reduce the effects of germination-induced skips and for expected reductions due to insects and soil conditions.

Summarizing corn population research is difficult because varying maturities across diverse growing environments make it difficult to draw sound conclusions. However, over the last 25 years the average U.S. corn planting population has risen from 23,000 plants per acre (PPA) to about 30,000 PPA. High-yielding environments allow for increasing populations to 36-38,000 PPA depending upon individual hybrid genetics. Higher population increases competition among plants for water, sunlight and soil nutrients. Pioneer has conducted studies comparing hybrids sold during previous decades. There is modest improvement in grain yield production due to higher leaf area index, efficiency of leaf photosynthesis, number of kernels per ear and weight of each kernel. However, the genetic selection of corn hybrids for stress tolerance has accounted for the vast majority of the 1-1.5 bushels/acre yield increase over the past 80 years. This is a result of higher population increasing the number of ears per acre. More precise soil fertility practices and technology traits which improve resistance to insect and weed pressure have also significantly improved average yields. Further driving yield is that the average grower is planting about two weeks earlier than in the past, somewhat the result of improvements in seed treatment options. Growers should be cautioned not to rely on ear flex scores when considering planting populations. Ear flex refers to the ability of a plant to extend ear size as plant density is reduced or as growing conditions improve. Many seed companies have abandoned evaluating ear flex and advise growers to rely on actual population recommendations from research trials planted at upwards of 70,000 PPA. Ear flex scores have their primary utility in deciding if a hybrid has the ability to deliver higher yields under possible replant situations such as emergence problems or hail which reduces populations to less than 12,000 PPA.

It is important to differentiate between grain and silage production when discussing plant populations. In low-yielding environments (<130 bushels/acre), response to plant population is more significant although grain yields tend to drop off gradually with higher populations. This is contrasted to drastic drops encountered among hybrids 30 years ago which were more prone to barrenness under high plant densities. This presumably makes variable rate seeding more beneficial in lower yield environments. With improved hybrid stress tolerance, many seed companies are routinely evaluating hybrids at plant populations as high as 42,000 PPA. There also appears to be slight differences in ideal plant populations by maturity (CRM). Shorter-season hybrids (<100 CRM) tend to show a greater grain response to higher populations followed by 101-113 CRM hybrids and finally longer-season hybrids (>113 CRM). Researchers theorize that higher populations overcome some of the disadvantages of smaller stature and lower leaf area index exhibited by shorter-season hybrids. Pioneer provides a planting rate calculator on their website (www.pioneer.com) to determine economic grain planting rates based on hybrid genetics, soil environment, seed cost and grain price.

Silage is a more complex situation. Traditional recommendations have been to increase plant populations in hybrids destined for silage by 10-20% per acre. However, with the increasing value of starch, newer recommendations suggest planting silage at no more than 2,000-3,000 PPA above the recommended planting population for that hybrid if it planted for grain. Higher populations might provide more yield of stover but reduce yields of stalk (grain). Higher plant populations tend to decrease stalk diameter and increase potential for lodging. This is much less of a concern for silage than for grain corn harvested at a much later maturity. Research has consistently demonstrated that higher populations (upwards of 40-42,000 PPA) increase silage yield while decreasing quality only slightly. The decrease in quality is caused by increased stover yield diluting the grain (starch) portion of the plant causing slightly higher fiber levels. Some earlier research suggests the smaller diameter stalk found in higher populations altered the fermentation caused by slightly lower fiber digestibility. More recent research conducted in 2008 and 2009 by Cornell University with conventional, leafy and BMR hybrids planted at populations ranging from 25-40,000 PPA showed no significant effect of increasing population on fiber digestibility. There are some silage growers who prefer to plant at lower populations, more optimal to grain yield, in an attempt to increase the stalk content of silage in response to increasing supplemental grain prices. A healthy corn crop can deposit as much as 0.5 to 1.0% units additional starch per day from 1/3 milksline to physiological maturity (black layer). Newer hybrids containing technology traits deliver excellent late-season plant health so delaying harvest until 3/4 milksline (or later) will result in higher stalk corn silage without a significant decline in fiber digestibility. If the crop is stressed or diseased, there is increased tendency to have a lower fiber digestibility from delaying harvest to these later stages.

Many different stress factors are capable of reducing corn stands, such as cold or wet soils, insect feeding or unfavorable weather conditions. To determine stand counts, determine the number of live plants from 1/100th of an acre taken from several representative locations in the field. Multiply the number of plants by row width in feet, and choose the hybrid with good stress emergence including variation to high residue.

Corn yield is influenced by stand density as well as soil uniformity. Variation in plant size can have a negative impact on yield, and uneven emergence timing leads to uneven plant size. Late emerging plants are at a competitive disadvantage and have been taken from larger plants in the stand and will have reduced leaf area, biomass, and yield. Several factors can lead to uneven emergence including variation in soil moisture, poor soil to soil contact due to working or planting into cold soil, variation in soil temperature caused by uneven crop residue distribution, soil crustling and insects or disease.
The factors to consider in deciding if replanting corn is economical include: plant density, uniformity and health of the current stand, date of the original planting and potential replanting, costs associated with replanting and crop insurance provisions. In situations such as flood damage, only a portion of the field may need to be considered for replant. Frost or hail can damage a wide area so plant density and health should be assessed across the entire field. In severe cases of stand reduction, growers will need to determine if replanting will be more profitable than keeping the current crop. The first step in a replant decision is assessing the current stand by evaluating the number of lost or weak-injured plants. For hail or spring-frost events, it is best to wait a few days to assess the stand to allow time to see how plants recover because the growing point of corn will be about 3/4 of an inch below the soil surface until the V5-V6 growth stage. Symptoms of early frost will show up 1-2 days after a frost with leaves that turn brown, but new green leaves too quickly, causing crushing and restricted plant growth. In cases of early-season flooding, corn prior to the V5-V6 growth stage can also survive for two to four days in saturated soils. Warm temperatures can shorten this survival time to only 24 hours. Check the growing point of corn plants to determine if they are soft and discolored or firm and healthy. Flooding depletes soils of oxygen and increases disease infections and nitrogen losses. Weather conditions following flooding are important to plant survival. Cool, wet conditions favor disease development. Very hot, windy conditions may dry soils too quickly, causing crustling and restricted plant growth. Also look for stand uniformity such as frequent long gaps in the rows. An uneven stand will yield less than a relatively even stand with the same number of plants. Stand counts should be taken randomly across the entire area being considered for replant. The accuracy of stand estimates logically improve with the number of locations sampled. When plant populations are lower than optimum, and will no longer produce a maximum yield, be sure to compare the lower yield due to late planting of a short-season hybrid with the yield potential of the reduced stand. Another factor to consider is the uncertainty of obtaining a good stand with a late planting and the possibility of a reduction in yield due to moisture stress at silking time. Flex-ear hybrids will increase the size of the ear (both kernel number and kernel size), and sometimes the number of ears per plant, when the plant population drops below the optimum. Once the surviving plant stand has been determined, check the health of the plants. Plants that are severely injured or defoliated will have reduced photosynthetic capability and lower yield. Check if the plant tissue at the growing point is a healthy white or cream color with normal texture. For evaluating frost damage to corn plants 6” or less in height, use a knife to cut some frosted plants off about an inch above the soil. If the plant is still alive, you will see the new growth in a matter of hours, certainly within one day. The center of the cut plant grows fastest, so you will observe a pyramid shape where just hours before there was a flat cut surface. Weed control is typically improved with later plantings due to tillage effects on germinated weeds and improved seedling vigor due to warmer soils. However, later plantings may incur more feeding from second-generation corn borers and silk feeding by rootworm beetles. Once a stand has been evaluated, the expected yield can be compared to expected replant yield. In general, Midwest corn yield potential increases with increased stand up to the optimum of 35,000 plants/acre, and declines with planting dates later than April 20 and earlier than April 10. Other factors such as fuel, labor, equipment, previous weed control applications, seed cost, insurance compensation, average first frost dates and availability/cost of feed alternatives need to be factored into whether replanting will result in an economically sound decision. If replanting is delayed past a reasonable time for corn to mature, it may be more economical to consider soybeans (e.g. after June 1 in Wisconsin) or forage sorghum, sudan-grass or sorghum-sudan crosses which can be planted into July. Corn is still one of the best options where past a reasonable time for corn to mature, it may be more economical to consider soybeans (e.g. after June 1 in Wisconsin) or forage sorghum, sudan-grass or sorghum-sudan crosses which can be planted into July. Corn is still one of the best options where past a reasonable time for corn to mature, it may be more economical to consider soybeans (e.g. after June 1 in Wisconsin) or forage sorghum, sudan-grass or sorghum-sudan crosses which can be planted into July. Corn is still one of the best options where past a reasonable time for corn to mature, it may be more economical to consider soybeans (e.g. after June 1 in Wisconsin) or forage sorghum, sudan-grass or sorghum-sudan crosses which can be planted into July. Corn is still one of the best options where past a reasonable time for corn to mature, it may be more economical to consider soybeans (e.g. after June 1 in Wisconsin) or forage sorghum, sudan-grass or sorghum-sudan crosses which can be planted into July. Corn is still one of the best options where past a reasonable time for corn to mature, it may be more economical to consider soybeans (e.g. after June 1 in Wisconsin) or forage sorghum, sudan-grass or sorghum-sudan crosses which can be planted into July. Corn is still one of the best options where past a reasonable time for corn to mature, it may be more economical to consider soybeans (e.g. after June 1 in Wisconsin) or forage sorghum, sudan-grass or sorghum-sudan crosses which can be planted into July. Corn is still one of the best options where
The following factors should be considered when selecting an alfalfa variety: yield and quality expectations, winter survival, soil types and drainage, disease control (e.g. anthracnose, bacterial, verticillium and fusarium wilts, root rots such as phytophthora and aphanomyces race 1 and race 2), pest pressure (e.g. leafhoppers, aphids, nematodes), rotation and stand life expectations, and ease of harvest (lodging susceptibility).

It is important to understand that alfalfa is genetically different from other crops. Most crops have two copies of each chromosome, while alfalfa is an autotetraploid, meaning it has four copies of each chromosome. Unlike corn hybrids where each plant of the same hybrid is genetically the same, individual alfalfa plants within a variety are not genetically identical. Alfalfa plants within a variety are like siblings in a family; they are similar but not identical.

Alfalfa cannot be truly hybridized. Due to the tetraploid nature of the alfalfa plant genome, it is not possible to breed homozygous inbreds, like in corn. Within true inbreds to cross, there can be no true hybrid alfalfa. Breeders who claim to have developed inbred alfalfa are essentially crossing different individual alfalfa plants within a variety, producing seed that is simply a mix of the two parent varieties and the cross, rather than a true hybrid. This can be observed by the variability among plants in a commercial hybrid alfalfa field which would not be expressed if alfalfa were a true hybrid like corn. Much of the increased yield in hybrid alfalfa varieties entered into University plots is due to the fact that “synthetic 1" seed was submitted which will express 7-10% higher yield. However, this yield advantage disappears due to general self-incapability in alfalfa when actual parent seed for commercial varieties is produced.

LODGING-RESISTANT VARIETIES

One of the more recent innovations in alfalfa genetics is the commercialization of lodging-resistant varieties. They have much improved standability when exposed to wind and rain events due to a more upright stem and crown architecture. Lodged alfalfa is more difficult to harvest. Every inch of uncut stem equates to 0.1-0.15 tons per acre of lost hay yield. Uncut stems left in the field can turn ‘woody’ and lower the forage quality of subsequent cuttings. Research also shows that more vertical plant architecture which reduces lodging has no effect on lowering fiber digestibility.

The development of genetically-modified, reduced-lignin alfalfa took more than 10 years to achieve approval and commercialization. Scientists at the Noble Foundation identified and suppressed several lignin genes. After a testing and selection process by a team of alfalfa breeders, commercially viable products were developed and introduced to the market in 2016. Commercial products, known as HarvXtra® alfalfa, combine the reduced-lignin gene and Roundup Ready® technology. In research conducted by Pioneer and Forage Genetics International, alfalfa varieties containing the HarvXtra® trait reduced-lignin 10-15% resulting in 10-15% increases in NDFD and RFQ.

High quality varieties marketed as having higher NDF digestibility (NDFD) have been available via conventional alfalfa breeding techniques for several years. These varieties were selected for 5-10% lowered lignin content resulting in higher NDFD. Reducing lignin became the breeding focus because cell wall content (measured as NDF) increases and cell wall digestibility (measured as NDFD) decreases with increasing maturity (and yield) from vegetative through bloom stages. The decreasing level of digestibility is due primarily to the production of lignin which the plant lays down to provide structural support as plants grow taller. Lignin is a complex organic compound which is indigestible by ruminants. As it forms cross-linkages with cellulose it causes a decrease in the digestibility of alfalfa cell walls.

The improved harvest flexibility and reduced risk of delayed harvest due to weather and the value of harvesting a higher digestible crop (maintaining aggressive cutting schedules) or the savings from eliminating one cutting during the season. Estimates are that harvesting alfalfa can cost upwards of $50/acre. If a 50-lb bag of reduced lignin alfalfa will seed approximately 3.3 acres, eliminating one cutting per year would result in a $165 savings every year of the stand life.

LODGING-RESISTANT VARIETIES

High quality varieties marketed as having higher NDF digestibility (NDFD) have been available via conventional alfalfa breeding techniques for several years. These varieties were selected for 5-10% lowered lignin content resulting in higher NDFD. Reducing lignin became the breeding focus because cell wall content (measured as NDF) increases and cell wall digestibility (measured as NDFD) decreases with increasing maturity (and yield) from vegetative through bloom stages. The decreasing level of digestibility is due primarily to the production of lignin which the plant lays down to provide structural support as plants grow taller. Lignin is a complex organic compound which is indigestible by ruminants. As it forms cross-linkages with cellulose it causes a decrease in the digestibility of alfalfa cell walls.

The improved harvest flexibility and reduced risk of delayed harvest due to weather and the value of harvesting a higher digestible crop (maintaining aggressive cutting schedules) or the savings from eliminating one cutting during the season. Estimates are that harvesting alfalfa can cost upwards of $50/acre. If a 50-lb bag of reduced lignin alfalfa will seed approximately 3.3 acres, eliminating one cutting per year would result in a $165 savings every year of the stand life.

LODGING-RESISTANT VARIETIES

High quality varieties marketed as having higher NDF digestibility (NDFD) have been available via conventional alfalfa breeding techniques for several years. These varieties were selected for 5-10% lowered lignin content resulting in higher NDFD. Reducing lignin became the breeding focus because cell wall content (measured as NDF) increases and cell wall digestibility (measured as NDFD) decreases with increasing maturity (and yield) from vegetative through bloom stages. The decreasing level of digestibility is due primarily to the production of lignin which the plant lays down to provide structural support as plants grow taller. Lignin is a complex organic compound which is indigestible by ruminants. As it forms cross-linkages with cellulose it causes a decrease in the digestibility of alfalfa cell walls.

The improved harvest flexibility and reduced risk of delayed harvest due to weather and the value of harvesting a higher digestible crop (maintaining aggressive cutting schedules) or the savings from eliminating one cutting during the season. Estimates are that harvesting alfalfa can cost upwards of $50/acre. If a 50-lb bag of reduced lignin alfalfa will seed approximately 3.3 acres, eliminating one cutting per year would result in a $165 savings every year of the stand life.

LODGING-RESISTANT VARIETIES

High quality varieties marketed as having higher NDF digestibility (NDFD) have been available via conventional alfalfa breeding techniques for several years. These varieties were selected for 5-10% lowered lignin content resulting in higher NDFD. Reducing lignin became the breeding focus because cell wall content (measured as NDF) increases and cell wall digestibility (measured as NDFD) decreases with increasing maturity (and yield) from vegetative through bloom stages. The decreasing level of digestibility is due primarily to the production of lignin which the plant lays down to provide structural support as plants grow taller. Lignin is a complex organic compound which is indigestible by ruminants. As it forms cross-linkages with cellulose it causes a decrease in the digestibility of alfalfa cell walls.

The improved harvest flexibility and reduced risk of delayed harvest due to weather and the value of harvesting a higher digestible crop (maintaining aggressive cutting schedules) or the savings from eliminating one cutting during the season. Estimates are that harvesting alfalfa can cost upwards of $50/acre. If a 50-lb bag of reduced lignin alfalfa will seed approximately 3.3 acres, eliminating one cutting per year would result in a $165 savings every year of the stand life.

LODGING-RESISTANT VARIETIES

High quality varieties marketed as having higher NDF digestibility (NDFD) have been available via conventional alfalfa breeding techniques for several years. These varieties were selected for 5-10% lowered lignin content resulting in higher NDFD. Reducing lignin became the breeding focus because cell wall content (measured as NDF) increases and cell wall digestibility (measured as NDFD) decreases with increasing maturity (and yield) from vegetative through bloom stages. The decreasing level of digestibility is due primarily to the production of lignin which the plant lays down to provide structural support as plants grow taller. Lignin is a complex organic compound which is indigestible by ruminants. As it forms cross-linkages with cellulose it causes a decrease in the digestibility of alfalfa cell walls.

The improved harvest flexibility and reduced risk of delayed harvest due to weather and the value of harvesting a higher digestible crop (maintaining aggressive cutting schedules) or the savings from eliminating one cutting during the season. Estimates are that harvesting alfalfa can cost upwards of $50/acre. If a 50-lb bag of reduced lignin alfalfa will seed approximately 3.3 acres, eliminating one cutting per year would result in a $165 savings every year of the stand life.

LODGING-RESISTANT VARIETIES

High quality varieties marketed as having higher NDF digestibility (NDFD) have been available via conventional alfalfa breeding techniques for several years. These varieties were selected for 5-10% lowered lignin content resulting in higher NDFD. Reducing lignin became the breeding focus because cell wall content (measured as NDF) increases and cell wall digestibility (measured as NDFD) decreases with increasing maturity (and yield) from vegetative through bloom stages. The decreasing level of digestibility is due primarily to the production of lignin which the plant lays down to provide structural support as plants grow taller. Lignin is a complex organic compound which is indigestible by ruminants. As it forms cross-linkages with cellulose it causes a decrease in the digestibility of alfalfa cell walls.

The improved harvest flexibility and reduced risk of delayed harvest due to weather and the value of harvesting a higher digestible crop (maintaining aggressive cutting schedules) or the savings from eliminating one cutting during the season. Estimates are that harvesting alfalfa can cost upwards of $50/acre. If a 50-lb bag of reduced lignin alfalfa will seed approximately 3.3 acres, eliminating one cutting per year would result in a $165 savings every year of the stand life.
ALFALFA BLENDS

When considering the value proposition of an alfalfa blend, most growers understand the need to critically compare price against seed purity and quality. Alfalfa blends from most reputable seed suppliers contain relatively high quality seed, however, depending upon the supplier; blends are certainly more variable and can range from high germination and high purity, to products with lower germination (often older seed) and low purity. Blends may have suitable performance for short rotations, or field situations where specific pest resistance traits or performance of a pure variety are neither needed nor valued. Carefully consider the economic impact of increased variability and reduced performance of blends in fields seeded down only every 3-5 years.

There are two main sources for blended alfalfa seed in the marketplace. One is “common seed” sold as variety not stated (VNS) products produced by individual farmers who allow a field to go to seed. This is not legal if it involves patented varieties or varieties containing proprietary transgenic traits. This “farmer source” seed generally finds its way into the market through seed brokers. Rather than the traditional VNS, these products often get sold as micro-brands marketed through retailers and companies possessing no seed production, conditioning or bagging capability. LODGING-RESISTANT VARIETIES ALLOW FOR MORE HARVESTABLE YIELD AND REDUCE LOWER QUALITY RESIDUE IN SUBSEQUENT CUTTINGS

There are a few major seed brands that also offer blends, typically from their own genetics and produced through their normal production channels. These blends are sold without stating the variety to allow seed companies the option of selling end-of-lifecycle products or excess inventory due to over-production. Blends can also include excess parent seed, experimental varieties that do not advance to commercial status or inventory that may not meet purity specifications for outcrosses or self-fertilized plants due to failed isolation standards. For all these reasons, blends can vary considerably from lot-to-lot, and almost certainly from year-to-year.

Some seed companies have built name recognition around premium blend products. These higher-priced blends may vary in variety but have a consistent branded name with a guaranteed specification for some trait such as a minimum DRI (Disease Resistance Index), or having a stated level of a known variety. Premium blends reduce the company’s options for inventory management, but offer growers more information about expected performance. Be cautious when a premium blend approaches the price of a pure variety. Unless you know all the varietal components of a blend, and have a specific reason for their inclusion levels, you will likely be better off purchasing a pure variety that fits your specific needs.

Growers should rely on the bag tag to evaluate any seed purchase. The tag will indicate the crop species, germination level, crop purity and weed seed content. Discerning growers should look at the seed tag for germination levels, and adjust seeding rates accordingly. Some blends are sold with descriptive information that narrows the range of variation, such as stating if the product is a “fall dormant” or “non-dormant” alfalfa blend. More reputable seed suppliers take extra measures to insure that blends meet minimum disease resistance criteria for the specific region the blend will be sold. Beware of blends with a tag showing lesser crop purity. If the tag says there is 3% “other crop,” don’t be surprised if your new alfalfa seeding looks like a mixed stand.
Alfalfa varieties have a range of dormancy from very dormant to non-dormant. Dormancy allows alfalfa plants to “shut down” in late fall for the purpose of winter survival by storing carbohydrates in the roots and crown. Dormancy is measured by comparing the amount of vegetative growth produced during a specific period in the fall and then given a numerical rating as shown in the table. A rating of one on the scale indicates the greatest fall dormancy with the least fall plant height while a rating of eleven indicates the least fall plant dormancy with the greatest plant height.

In general, less-dormant alfalfa varieties initiate regrowth more quickly than more-dormant varieties, leading to higher yield potential. Non-dormant varieties have shallow crown depth and often suffer winter damage and reduced winter survival. In modern varieties, fall dormancy does not equate to winterhardiness.

FALL DORMANCY DESCRIPTIONS FOR ALFALFA

<table>
<thead>
<tr>
<th>FD RATING</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Very Dormant</td>
</tr>
<tr>
<td>3-4</td>
<td>Dormant</td>
</tr>
<tr>
<td>5</td>
<td>Moderately Dormant</td>
</tr>
<tr>
<td>6-7</td>
<td>Semi-Dormant</td>
</tr>
<tr>
<td>8-9</td>
<td>Non-Dormant</td>
</tr>
<tr>
<td>10-11</td>
<td>Very Non-Dormant</td>
</tr>
</tbody>
</table>

WINTER SURVIVAL RATINGS FOR ALFALFA

<table>
<thead>
<tr>
<th>WS RATING</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Extremely Winterhardy</td>
</tr>
<tr>
<td>2</td>
<td>Very Winterhardy</td>
</tr>
<tr>
<td>3</td>
<td>Winterhardy</td>
</tr>
<tr>
<td>4</td>
<td>Moderately Winterhardy</td>
</tr>
<tr>
<td>5</td>
<td>Slightly Winterhardy</td>
</tr>
<tr>
<td>6</td>
<td>Non- Winterhardy</td>
</tr>
</tbody>
</table>

Winterhardiness is a general term referring to the ability of plants to survive all the factors influencing winter survival including temperature, moisture, disease, insects, and previous crop management. Alfalfa varieties are classified using a standard test. Alfalfa plants accumulate carbohydrate reserves in the root and crown tissue during fall regrowth. These feed the plant over winter, and help initiate regrowth in the spring. Fall regrowth facilitates additional nutrient reserves in the roots. Younger, healthy plants have a greater capacity to store food reserves. These plants will be more tolerant of cold temperature stress and have a greater capacity to initiate regrowth in the spring. Alfalfa can usually survive temperatures of 15°F at the crown. It likely will take multiple weeks of exposure to these low temperatures to actually kill crown buds. Four inches of snow cover provides enough protective insulation to allow a 20°F difference between air and crown temperature.

Winterhardiness was historically associated with fall dormancy, where varieties that are more dormant had lower winterhardiness scores. However, alfalfa breeders have “broken” the genetic link between fall dormancy and winterhardiness. Modern fall dormancy 4 to 6 varieties have very good winterhardiness scores when evaluated by stand persistence. With modern alfalfa varieties, fall dormancy does not equate to winterhardiness.

DISEASE CONSIDERATIONS

The major alfalfa diseases include:
1) stem and crown disease (anthracnose),
2) bacterial, fusarium, and verticillium wilt and
3) Root rots such as phytophthora and aphanomyces (race 1 and race 2).

Root rots are especially problematic in susceptible varieties when planted in poorly drained soils with free water in excess of field capacity. Alfalfa is not a good crop choice for poorly drained soils.

The fact that alfalfa plants within a variety are not identical, not all the plants within a variety will carry the same genes for insect and disease resistance. Therefore, alfalfa breeders measure gene frequencies within a variety to determine the level of disease resistance.

ALFALFA RESISTANCE RATINGS

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>RESISTANCE LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW RESISTANCE</td>
<td>7-14%</td>
</tr>
<tr>
<td>MODERATELY RESISTANT</td>
<td>15-30%</td>
</tr>
<tr>
<td>SUSCEPTIBLE</td>
<td>0-6%</td>
</tr>
<tr>
<td>RESISTANT</td>
<td>31-50%</td>
</tr>
<tr>
<td>HIGHLY RESISTANT</td>
<td>>50%</td>
</tr>
</tbody>
</table>
pest resistance. The gene frequency percentages determine the resistance level for a given pest trait, and the variety is then classified in a resistance class for each pest trait. This rating scale is standardized throughout the alfalfa seed industry. For example, if a variety has 86% of plants expressing anthracnose resistance, it meets the threshold of >50% resistant plants, and merits a rating of “High Resistance” to anthracnose.

ALFALFA DISEASE RESISTANCE RATINGS

<table>
<thead>
<tr>
<th>% RESISTANT PLANTS</th>
<th>RESISTANCE CLASS</th>
<th>CLASS ABBREVIATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td><6</td>
<td>Susceptible</td>
<td>S</td>
</tr>
<tr>
<td>7-14</td>
<td>Low Resistance</td>
<td>LR</td>
</tr>
<tr>
<td>15-30</td>
<td>Moderately Resistant</td>
<td>MR</td>
</tr>
<tr>
<td>31-50</td>
<td>Resistant</td>
<td>R</td>
</tr>
<tr>
<td>>50</td>
<td>Highly Resistant</td>
<td>HR</td>
</tr>
</tbody>
</table>

EXAMPLE OF HOW AN ALFALFA VARIETY IS ASSIGNED A DISEASE RESISTANCE INDEX SCORE

DISEASE	**RESISTANCE CLASS**	**POINTS**
Bacterial Wilt | HR | 5
Verticillium Wilt | R | 4
Fusarium Wilt | HR | 5
Anthracnose | HR | 5
Phytophthora Root Rot | HR | 5
Aphanomyces Race 1 | HR | 5
Aphanomyces Race 2 | R | 4
DRI Score | **33**

INSECT CONSIDERATIONS

Alfalfa pests of concern vary depending on growing region and whether the crop is grown commercially or for seed. Varieties are typically rated for resistance to spotted aphid, pea aphid, blue aphid, northern and southern nematode and stem nematode. However, the potato leafhopper is the most impactful insect pest of alfalfa in the Eastern half of North America. Leafhopper-resistant varieties have been available for more than a decade. If a grower is successfully scouting (sweep netting weekly) and spraying for control of leafhoppers, a leafhopper-resistant variety may not be required. However, for growers who are not scouting, or who notice leafhopper damage in their alfalfa despite spraying, then a leafhopper-resistant variety might be a better option. Varietal resistance comes from small hairs on the stems which repel the leafhopper. These varieties are especially recommended where intense PLH pressure spans multiple cuts during most growing seasons. As with disease resistance, not all plants will exhibit the same level of resistance in a leafhopper-resistant variety.

SEED COATINGS

Many seed companies sell coated alfalfa seed. A common heavy-coating contains 34% limestone. Heavy-coated or limestone-coated seed has no consistent advantage in cloddy or dry soil conditions. In fact, a heavy coating can slow water uptake under moderate to dry soil moisture conditions. Pioneer offers a light 9% polymer seed coating. The seed treatment process first applies fungicide directly on the seed. Next, a separating layer of mica and polymer is applied. This is followed by a layer of rhizobia, and then a final layer of mica and polymer. Mica is a smooth mineral similar to talc, and acts to enhance flowability and plantability of alfalfa seed. This multi-layer approach to coating Pioneer® brand alfalfa seed minimizes dust-off for improved fungicide safety, ensures excellent rhizobial activity, and enhances seed plantability.

PURE LIVE SEED COUNTS

Pure live seed (PLS) can be calculated from information found on an alfalfa variety seed tag. It is the percent pure seed multiplied by the percent total germination, divided by 100. Pure live seed is the seed you can expect to germinate and contribute to stand establishment. If the tags states

IMPACT OF SEED COATING AND SEEDING RATES ON ALFALFA SEEDS PLANTED PER SQUARE FOOT

<table>
<thead>
<tr>
<th>SEEDING RATE (LBS/A)</th>
<th>ACRES SEeded PER 50 LB UNIT</th>
<th>9% LIGHT-COAT</th>
<th>34% HEAVY-COAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>1.9</td>
<td>110</td>
<td>80</td>
</tr>
<tr>
<td>24</td>
<td>2.1</td>
<td>101</td>
<td>74*</td>
</tr>
<tr>
<td>22</td>
<td>2.3</td>
<td>93</td>
<td>67</td>
</tr>
<tr>
<td>20</td>
<td>2.5</td>
<td>85</td>
<td>61</td>
</tr>
<tr>
<td>18</td>
<td>2.8</td>
<td>76*</td>
<td>56</td>
</tr>
<tr>
<td>16</td>
<td>3.1</td>
<td>68</td>
<td>49</td>
</tr>
<tr>
<td>14</td>
<td>3.6</td>
<td>59</td>
<td>43</td>
</tr>
<tr>
<td>12</td>
<td>4.2</td>
<td>51</td>
<td>37</td>
</tr>
</tbody>
</table>

*Recommended final pure live seed (PLS) count at planting is 70-75 alfalfa seeds per square foot
91% pure seed (excluding coatings, inert matter, weed and other crop seed) and 90% total germination, multiply 90% pure seed, times 90% germination, to equal 82% pure live seed. By contrast, varieties with 34% heavy coating and 90% germination, to equal 82% pure live seed, (multiply 90% pure seed, times 90% seed) and 90% total germination, in inert matter, weed and other crop seed. 91% pure seed (excluding coatings, inert matter, weed and other crop seed) and 90% total germination, multiply 90% pure seed, times 90% germination, to equal 82% pure live seed.

Planting Preparation

Soil tests are needed to determine fertility needs before ground preparation begins. Phosphorus is critical for healthy alfalfa root development and potassium is needed for high yields. Soil pH levels of 6.2 to 7.0 provide the best environment for nodules to form in the root system. A firm seedbed is critical for successful alfalfa establishment. It improves seed-to-soil contact and prevents the seed from being planted too deep. Soil clods can cause uneven seed depth, impede emerging seedlings and cause soil surface to dry rapidly.

No-till seeding can also be a viable option because the seedbed is already firm and top soil moisture is generally good. Take special care to adjust seed depth gauge wheels for field conditions, and adjust press wheels for optimum seed-to-soil contact during planting. With attention to these details, no-till stand establishment can be very successful.

Planting Depth

Depth of planting is critical for alfalfa growth. The accompanying chart shows the number of seeds per square foot. To obtain 70-75 seeds per square foot, growers would have to seed 24 lbs/A of heavy-coated alfalfa seed, but only 18 lbs/A of light-coated seed. When a grower plants a heavy-coated seed but does not increase the seeding rate, there is a higher risk of thin/weak stands, stand establishment failure and reduced yield over the total life of the stand. The level of coating can dramatically impact the cost of alfalfa seed.

![PLANTING DEPTH](image)

Planting Dates

Alfalfa requires 37°F soil temperatures to germinate compared to 48°F for corn and 55-60°F for soybeans. The fact that alfalfa germinates at much lower soil temperatures is why we are able to plant alfalfa earlier in the spring than many other crops.

In dormant alfalfa growing regions, spring seed can be planted between April 1 and May 15 when there is less chance of frost, along with reduced potential for moisture stress and crusting problems. Clear seeding (no nurse crop) in the spring will usually allow for at least two cuttings during the seeding year. Clear seeding is best on level fields where soil erosion is minimal.

The critical period for stand survival is the two week period after emergence. Premature seedling death can increase the risk of poor germination from seed rotting in cold, damp soils. Young alfalfa seedlings can tolerate temperatures as low as 20°F (for a few hours) but extremely early seeding can be risky if temperatures turn cold leaving the stand susceptible to seedling diseases. The growing point of alfalfa (like soybeans) is above the soil for up several weeks after germination. This risk of stand injury from low temperatures exists until contractile growth is completed (about when the second trifoliate leaf has emerged) and the growing point (crown buds) is protected below the soil surface. Freezing danger is actually greater after alfalfa plants lose cold tolerance when they are about 4 inches tall (3rd or 4th trifoliate leaf stage).

August 1 to August 15 are typical dates for late summer seeding with reduced weed competition and less concern about diseases (Pythium, Phytophthora and Aphanomyces) on heavy, poorly drained soils. Alfalfa seedings need at least six weeks of growth prior to killing frost (~23°F) to grow large enough and lay down adequate root reserves to survive the winter and thrive in the spring. It is possible to also seed alfalfa after a small grain or vegetable crop, if harvest occurs by early August, field conditions are suitable and previously used herbicide will not harm new seedlings.

<table>
<thead>
<tr>
<th>Planting Dates</th>
<th>Planting Depth</th>
<th>Planting Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 1 to August 15</td>
<td>Depth of planting is critical for alfalfa given the extremely small seed size. It is recommended to seed 14-15 inches deep on clay or loam soils and 15-16 inches deep on sandy soils. Topsoil moisture may be inadequate to sustain young seedlings with shallow planting, and seedlings may not be able to push to the surface with deep planting.</td>
<td>Soil tests are needed to determine fertility needs before ground preparation begins. Phosphorus is critical for healthy alfalfa root development and potassium is needed for high yields. Soil pH levels of 6.2 to 7.0 provide the best environment for nodules to form in the root system. A firm seedbed is critical for successful alfalfa establishment. It improves seed-to-soil contact and prevents the seed from being planted too deep. Soil clods can cause uneven seed depth, impede emerging seedlings and cause soil surface to dry rapidly.</td>
</tr>
</tbody>
</table>

Field Preparation

- **Soil preparation begins.**
- **Phosphorus**
- **Fertility needs before ground preparation begins.**
- **Soil tests are needed to determine fertility needs before ground preparation begins.**
- **Phosphorus**
- **Soil pH levels of 6.2 to 7.0 provide the best environment for nodules to form in the root system.**
- **A firm seedbed is critical for successful alfalfa establishment.**
- **It improves seed-to-soil contact and prevents the seed from being planted too deep.**
- **Soil clods can cause uneven seed depth, impede emerging seedlings and cause soil surface to dry rapidly.**

Planting Depth

- **Depth of planting is critical for alfalfa given the extremely small seed size.**
- **It is recommended to seed 14-15 inches deep on clay or loam soils and 15-16 inches deep on sandy soils.**
- **Topsoil moisture may be inadequate to sustain young seedlings with shallow planting, and seedlings may not be able to push to the surface with deep planting.**

Planting Dates

- **Alfalfa requires 37°F soil temperatures to germinate compared to 48°F for corn and 55-60°F for soybeans.**
- **The fact that alfalfa germinates at much lower soil temperatures is why we are able to plant alfalfa earlier in the spring than many other crops.**
- **In dormant alfalfa growing regions, spring seeding typically takes place between April 1 and May 15 when there is less chance of frost, along with reduced potential for moisture stress and crusting problems. Clear seeding (no nurse crop) in the spring will usually allow for at least two cuttings during the seeding year. Clear seeding is best on level fields where soil erosion is minimal.**
- **The critical period for stand survival is the two week period after emergence. Premature seedling death can increase the risk of poor germination from seed rotting in cold, damp soils. Young alfalfa seedlings can tolerate temperatures as low as 20°F (for a few hours) but extremely early seeding can be risky if temperatures turn cold leaving the stand susceptible to seedling diseases.**
- **The growing point of alfalfa (like soybeans) is above the soil for up several weeks after germination. This risk of stand injury from low temperatures exists until contractile growth is completed (about when the second trifoliate leaf has emerged) and the growing point (crown buds) is protected below the soil surface. Freezing danger is actually greater after alfalfa plants lose cold tolerance when they are about 4 inches tall (3rd or 4th trifoliate leaf stage).**
- **August 1 to August 15 are typical dates for late summer seeding with reduced weed competition and less concern about diseases (Pythium, Phytophthora and Aphanomyces) on heavy, poorly drained soils. Alfalfa seedings need at least six weeks of growth prior to killing frost (~23°F) to grow large enough and lay down adequate root reserves to survive the winter and thrive in the spring. It is possible to also seed alfalfa after a small grain or vegetable crop, if harvest occurs by early August, field conditions are suitable and previously used herbicide will not harm new seedlings.**
SEEDING RATE

Seeding rates in alfalfa traditionally focused on how many pounds per acre to plant. A more precise method is to set a target seeding rate in terms of seeds per square foot. Most university researchers recommend planting between 60-70 seeds/ft². High seeding rates (70-80 seeds/ft²) allow planting between 60-70 seeds/ft². High seeding rates (70-80 seeds/ft²) allow planting at densities of 15-25 plants per square foot as a goal for the first production year. Planting adjustments are required to compensate for seed coatings, inert materials, and germination (found on seed tag). Use the accompanying table to help determine how many pounds per acre (“out-of-the-bag”) are needed to hit the target seeding rate (assumes 220,000 seeds per lb and 90% germination).

ALFALFA SEEDING RATES

<table>
<thead>
<tr>
<th>What should your planter’s seeding rate be set at to achieve your target?</th>
<th>lbs/ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>50</td>
<td>40</td>
</tr>
</tbody>
</table>

Notes: 1) Universities recommend 60-70 viable seeds per sq. ft. 2) Assumes alfalfa has 220,000 seeds per pound, germination is 90%, and a unit or bag of alfalfa contains 50 lbs. 3) Seed coating includes fungicide, inoculant, and other inert materials.

HARD SEED

Alfalfa produces a percentage of seed with an impermeable seed coat, referred to as hard seed. Hard seed fails to absorb water and does not immediately germinate when planted in a field, but rather is delayed by anywhere from one week to two months or more. Since hard seed does not improve stand establishment or yield, seed companies minimize the amount of hard seed in a bag of seed through scarification (mechanical abrasion) of the seed coat. Once scarified the hard seed germinates like normal seed, although even after scarifying, some hard seed remains. Seed quality is determined after the final batch is blended and the seed tag will then reflect the new germination percent. Alfalfa seed tags will show hard seed percentage in addition to total germination. Ideally, hard seed should be less than 10-15% of total germination.

WEED CONTROL AT STAND ESTABLISHMENT

One of the most important limiting factors of alfalfa production is weed control. When growers eliminate weeds from an alfalfa stand, both alfalfa yields and forage quality are frequently improved. Weed-free stands can also result in longer stand life. Growers have several options in the seeding year to control weeds and to promote vigorous, healthy establishment of alfalfa.

USING A NURSE CROP

Seeding alfalfa with oats, barely or Italian ryegrass as a nurse-crop is a common practice in geographies seeking erosion control during early stand establishment or when additional early-season forage is needed. To avoid excessive competition with alfalfa seedlings, growers using a nurse crop should seed it at less than optimum seeding rates, and harvest it in the boot stage of growth. The primary disadvantage of a nurse crop is increased competition for moisture and nutrients, and therefore not recommended for late summer alfalfa seeding.

With the use of glyphosate resistant alfalfa, nurse crops can be eliminated early with a timely application of glyphosate herbicide. This practice provides early season erosion control benefits, along with improved weed control and more rapid alfalfa growth for higher alfalfa yields and quality in the seeding year.

DIRECT SEEDING

• Recommended for high quality forage
• Balances seeding year tonnage, forage quality, and alfalfa establishment success
• Select fields with low erosion
• Weed control options include traditional herbicides or glyphosate-based system

COMPANION SEEDING WITH NURSE CROP

• Suitable for land prone to wind or water erosion
• Select suitable early-maturity, short-stature companion crops like oats, spring barley, or spring triticale
• Seed at 1bu/A (sandy soil) - 1.5 bu/A (heavy soils) at a planting depth of 1-2 inches deeper than alfalfa
• Limit nitrogen applications. Not >30lb/acre to prevent increased lodging in cereals and N for weeds
• Harvest early (boot stage) - recommended
• Harvesting for grain/straw - not recommended

One of the most important limiting factors of alfalfa production is weed control. When growers eliminate weeds from an alfalfa stand, both alfalfa yields and forage quality are frequently improved. Weed-free stands can also result in longer stand life. Growers have several options in the seeding year to control weeds and to promote vigorous, healthy establishment of alfalfa.

For spring seedings, growers frequently use conventional tillage field preparation which provides a clean initial seeded. However, without herbicidal control, weeds can emerge and outgrow seedling alfalfa to dominate the stand in just a few weeks. One option in this situation is to take an early first clipping which may contain more weeds than alfalfa. As long as weeds do not smother the young alfalfa plants, it will tend to outgrow most weeds. An alternative option some growers choose is to plant up to ten more lbs/A than recommended seeding rates to crowd out weeds. Today the seed cost versus the cost of herbicidal weed control, means it is less expensive and more efficacious to use a well-chosen herbicide.

No-till seeding or late-summer seedings may offer less weed competition during stand establishment, especially if the prior crop was not weedy. No-till avoids bringing soil-borne weed seeds to the surface where germination will occur. Clear seeding of alfalfa in a no-till environment works best in conjunction with a burndown herbicide to eliminate weeds in the field. Growers can then assess the need for a post-emergence herbicide as the alfalfa grows to manage weed pressure.
Non-glyphosate alfalfa herbicide options frequently provide adequate weed control including both pre-emergence and post-emergence products. However, traditional alfalfa herbicide products often have limitations on the spectrum of weeds controlled or may have a small reduction of alfalfa yield in the seeding year. The introduction of alfalfa varieties with resistance to glyphosate herbicide provides yet another weed control option. Weed control needs are different depending on the growing environment. In drier growing regions like the Western US, alfalfa is not very competitive against weeds. Similarly, the Southern US has grass weed species like fescue which are hard to control with other herbicides. The use of glyphosate resistant alfalfa technology provides an excellent tool to control these weeds without plant injury or stunting. When planting alfalfa with glyphosate resistance it is important to spray these fields with glyphosate during the early seeding establishment phase (3rd to 4th trifoliate stage of growth). This eliminates the 3-7% of alfalfa plants without resistance to glyphosate. Also, alfalfa growers may need to make additional glyphosate applications as new weeds emerge during the life of the stand because it does not have residual activity.

MIXED STANDS

If soil conditions are suitable for growing alfalfa, it is difficult to beat pure alfalfa stands for yield or forage quality. However, when growing conditions are more challenging (e.g. fields with variable drainage), mixed alfalfa-grass stands may have merit being somewhat less susceptible to diseases associated with wetter soils, winter-heaving, winterkill and pests such as potato leafhopper. Timothy, orchardgrass, perennial ryegrass, and endophyte-free tall fescue are the most common grasses seeded with alfalfa. In general, mixed stands will be seeded with 10-40% grass seed. Seeding rates will vary due to differences in seed size given that orchardgrass has 400,000 seeds per pound while timothy has over 1,100,000 seeds per pound. A key in choosing the proper forage grass for seeding with alfalfa is the heading date between the earliest and latest timing varieties. Orchardgrass, timothy, and a similar range with orchardgrass. The challenge for mixed stands in the future may be identifying a forage grass with the maturity to match the modified harvest schedule of reduced-lignin alfalfa. Orchardgrass needs well-drained soils and has poor tolerance of ice sheets. Timothy has a wider range of soil adaption but doesn’t yield well once the soil warms up in the summer and in a mixed stand often doesn’t persist longer than about two years. Tall fescue has become popular due to tolerance of moderate drainage and low pH, and it produces well from spring into fall with a relatively narrow range in heading dates. Perennial ryegrass is better suited to Southern climates as they don’t survive winter as well as other grasses. Smooth bromegrass does not mix well with alfalfa because it cannot handle the intense cutting schedule of alfalfa and typically requires a 6-week cutting schedule to persist. It is not recommended to seed alfalfa-grass in fields where soil test potassium levels are medium to low. While the initial yield may perform well, once the grass becomes established their root system will take up potassium to the detriment of the alfalfa. Start with adequate soil test potassium levels and maintain potassium fertility throughout the life of the stand.

RECOMMENDED RATES FOR GRASSES SEEDED WITH ALFALFA

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>RATE (lbs/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reed Canarygrass</td>
<td>5-7</td>
</tr>
<tr>
<td>Smooth Bromegrass</td>
<td>6-10</td>
</tr>
<tr>
<td>Timothy</td>
<td>2-5</td>
</tr>
<tr>
<td>Orchardgrass</td>
<td>2-5</td>
</tr>
<tr>
<td>Tall Fescue</td>
<td>4-8</td>
</tr>
<tr>
<td>Festuclium</td>
<td>4-8</td>
</tr>
<tr>
<td>Perennial Ryegrass</td>
<td>4-8</td>
</tr>
</tbody>
</table>

*Alfalfa seeding rate, 7-10 lbs/acre
Source: University of Minnesota

OVER-SEEDING THIN STANDS

Growers are sometimes tempted to over-seed additional alfalfa into a thin stand. The problem with over-seeding alfalfa into alfalfa stands that are over one year old is autoxotoxicity (discussed in the GROW section). Over-seeding with cereals, Italian ryegrass, sorghum-sudangrass, orchardgrass or clover into alfalfa can extend the stand life one or more growing seasons when economics or conservation planning require maintenance of the current thin alfalfa stand. University of Wisconsin extension has summarized the research around over-seeding and suggests it is not beneficial unless the alfalfa stand has less 40 stems/ft². Older alfalfa stands that carry a heavy weed load should likely be rotated rather than over-seeded. Over-seeding with legumes such as red clover can yield forage suitable for lactating dairy cattle when harvested at typical late-bud maturity. Grasses over-seeded into alfalfa stands generally produce higher yields of forage than when over-seeded legumes. Adding a perennial like orchardgrass is useful if extending the stand life beyond the current growing season is desired. Annual grasses and cereal grains can be harvested early in the growing season, but decline by mid-summer so best suited to a stand that will be harvested only one or two more cuttings. Early harvest of cereals and annual grasses (prior to boot stage) will maximize quality and likely yield a second cutting. Perennial grasses are generally harvested later as they will need a longer initial establishment period. Legumes added to a thin alfalfa stand should be inoculated prior to seeding to ensure adequate nodulation and nitrogen fixation. Cereals and grasses may need additional nitrogen (depending upon previous manure applications) to support yield and forage quality.

STAND EVALUATION

It is best to check the viability of alfalfa fields after they have started to green up in the early spring. Check for bud and new shoot vigor. Healthy crowns are large, symmetrical and have many shoots. Watch for delayed green-up, lopsided crowns, and uneven growth of shoots. If any of these characteristics exist, investigate further by digging a few plants 4-6 inches deep and look at the taproot for any signs of browning or dehydration indicating root damage. If heaving is evident, also dig some plants to determine if the taproot is broken. Plants with broken tap-roots may green-up, but perform poorly and eventually die. Severely heaved plants can survive, but their longevity and productivity will be reduced. Crows that are heaved one inch or more likely have a long life of the stand.

ALFALFA STEM COUNT AND YIELD POTENTIAL

<table>
<thead>
<tr>
<th>Stems/sq.ft.</th>
<th>Rule of Thumb: >55 stems per sq ft allows maximum yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-50</td>
<td>Usually keep stand but some yield reduction</td>
</tr>
<tr>
<td><40</td>
<td>Consider replacing stand due to high yield loss</td>
</tr>
</tbody>
</table>

High Productivity Soils

<table>
<thead>
<tr>
<th>Stems/lf A</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>>55</td>
<td>Usually keep stand but some yield reduction</td>
</tr>
<tr>
<td>40-50</td>
<td>Consider replacing stand due to high yield loss</td>
</tr>
</tbody>
</table>

Medium Productivity Soils

<table>
<thead>
<tr>
<th>Stems/lf A</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-50</td>
<td></td>
<td></td>
</tr>
<tr>
<td><40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: University of Minnesota
less are not as likely to have a broken taproot. With time these plants can reseat themselves. Raised crowns are susceptible to weather and mechanical damage. Raise cutter bars to avoid damaging exposed crowns. Using a cultipacker or roller to push the crowns back in the ground can do more harm than good by damaging crowns and breaking taproots.

When alfalfa growth is 4-6 inches in height, use stem counts (stems per square foot) as the preferred density measure to evaluate if thin stands need rotating. Count only the stems expected to be tall enough to mow. A stem density of 55 per square foot has good yield potential. Expect some yield loss with stem counts between 40 and 50. Consider replacing the stand if there are less than 40 stems per square foot; and the crown and root health is poor. Stem counts are an effective evaluation tool for stands of all ages. Older stands have fewer plants per square foot, but older plants produce more stems than younger plants.
Corn growth and development is typically categorized by assigning a developmental stage. The most commonly used staging system divides plant development into vegetative (V) and reproductive (R) stages. Subdivisions of the V stages are designated numerically as V1, V2, V3, through Vn, where “n” simply represents the last leaf stage before tasseling. The first V stage is designated as VE, for emergence, and the last V stage is VT, for tasseling. The final leaf stage, Vn, varies by hybrid and/or environmental influences.

Corn is a monoecious plant, which means it produces separate male and female flowers on the same plant. The tassel (male flower) produces pollen, while the ear (female flower) produces ovules that become the seed. There is a vertical separation of about three to four feet between the flowers, which can add to the challenge of successful pollination.

The tassel can produce more than 1,000,000 pollen grains, and the ear can produce more than 1,000 silks. Consequently, there are approximately 1,000 to 1,500 times as many pollen grains as silks produced. In theory, 20 to 30 plants could fertilize all the silks in one acre, but not all the pollen shed by a plant falls on a silk.

Pollen shed occurs discontinuously for a period of approximately five to eight days, and only sheds when temperature and moisture conditions are favorable. Pollen shed in a field can last up to 2 weeks. The peak time for pollen to shed is mid-to-late morning. The average life span of a pollen grain is approximately 20 minutes after it is shed, and most of the pollen that is shed by a plant falls within 20 to 50 feet of that plant. However, pollen can be transported much greater distances by the wind. It has been estimated that roughly 97 percent of kernels produced are fertilized with pollen from another plant.

Silks emerge from the husk over a period of three to five days, starting with those silks attached at the lower middle portion of the ear and progressing toward the ear tip. Depending on the environment, an individual silk continues to grow for about seven days or until the silk intercepts pollen grains. Research studies have shown that typically, a minimum of five pollen grains must land on each silk and start pollen tube growth to ensure that genetic material from one of these pollen grains successfully fertilizes the ovule. Immediately after fertilization, the ovule creates an abscission layer at the base of the silk that restricts entry of genetic material from other pollen grains. The silk then detaches from the developing kernel, begins to desiccate, and turns brown. If the ovule is not successfully fertilized within this seven day window, the silk dies, the unfertilized ovule eventually disappears, and the portion of the cob to which this ovule is attached becomes barren. Kernel set (actively growing kernels after pollination) can be checked two or three days after pollen shed stops by carefully removing the husks from an ear and then gently shaking the ear to see if the silks are detached. Silks drop off ovules that have been successfully fertilized (kernels), but any ovule that retains a silk has not been fertilized and no kernel will develop.

WHAT IS CORN SILAGE?

HIGH MOISTURE CORN

ATTACHED TO A HIGHLY DIGESTIBLE GRASS...

Source of energy contribution in corn silage:
- 65% grain
- 10% cell contents
- 25% NDF (fibers)

Increased grain (starch) is responsible for most of the nutritional value over the growth of the corn plant.

Fiber influences energy density, dry matter intake and rumen health (mat development and stimulation of cud chewing to buffer the rumen).
It is important that pollen shed and silk emergence happen concurrently to ensure successful pollination, which is called "nick." However, with today’s modern hybrids, it is not unusual to see silks emerging from the husks one or two days before full tassel emergence occurs. This is a large change from hybrids of a few decades ago, and has resulted in a greatly improved pollination process and higher yields.

It is important that pollen shed and silk emergence happen concurrently to ensure successful pollination, which is called "nick." However, with today’s modern hybrids, it is not unusual to see silks emerging from the husks one or two days before full tassel emergence occurs. This is a large change from hybrids of a few decades ago, and has resulted in a greatly improved pollination process and higher yields.

CORN SEEDLING DEVELOPMENT FROM GERMINATION THROUGH V2

Once planted, corn seeds absorb water from the soil and begin to grow. VE (emergence) occurs when the coleoptile (spike) pushes through the soil surface. Corn plants can emerge within five days in ideal heat and moisture conditions. But in practice, due to early planting under seasonably cool conditions, at least two weeks are normally required from planting to emergence. With below average spring temperatures, corn seeds may be in the ground for three weeks or more before seedlings emerge (reinforcing the value of seed treatments). The growing point (stem apex) is 1 to 1.5 inches below the surface. The seminal root system is growing from the seed. The seminal roots do much of the early work, but growth slows after VE as nodal roots begin to grow.

Approximately 90-120 GDUs are required for a corn seedling to emerge following planting, but the exact number required may be affected by planting depth, solar radiation, moisture, tillage, or other factors. Although air temperature is monitored and reported, the speed of germination, seedling emergence, and subsequent growth while the growing point is below the soil surface is governed by soil temperature (soil GDUs) at the seed zone. Soil GDUs play a dominant role as the corn seed germinates and a progressively diminishing role as the seedling grows through V stages until about V6. Air temperature inserts its dominant influence on the rate of corn growth after the growing point rises above the soil surface.

Most of the corn grown in the United States contains five of eight genes required to produce purple color. The other three genes are present only in certain hybrids and some of these genes are cold sensitive. When exposed to cool temperatures, they induce purpling in young plants. Purpling can be triggered when daytime temperatures are above 60º F followed by nighttime air temperature below 50º F. Testing of corn plants that exhibit genetic purpling at the seedling stage has shown no evidence of adverse effects on metabolism, growth, chlorophyll production, or yield. The cold temperature stress which induces purpling, however, does affect early plant growth. Regardless of whether the corn is purple or green, cool temperatures slow growth. Researchers studying purple corn have observed no difference between cold-stress effects associated with purple seedlings compared to green seedlings. Hybrids that develop the purple pigment when exposed to cold temperatures have been found to contain as much chlorophyll (the green pigment) as hybrids that remain green when grown under the same cool conditions.

During early vegetative stages (V1-V5), there is minimal stalk (internode) elongation, which is somewhat dependent on soil temperature. Corn is a rather hardy plant when it comes to recovering from early season stress such as frost damage because prior to V5 the growing point is still below the ground and protected from low air temperatures. A shoot initiates at each node (axil of each leaf) from the first leaf (below ground) to approximately the 13th leaf (above ground). Shoots that develop at above ground nodes may differentiate into reproductive tissue (ears or cobs), and shoots that develop below ground may differentiate into vegetative tissue (tillers or suckers). Permanent roots develop at five nodes
below the surface, one at the soil surface, and potentially one or more nodes above the soil surface. Roots above the soil surface are commonly referred to as "brace" or "anchor" roots and may support the stalk and take up water and nutrients if they penetrate the soil. The uppermost roots may not reach the soil because the plant stops growing when it switches from vegetative to reproductive development. The development of this stage is dependent on genetics and the environment.

Starting at about the V5-V6 stage of growth, a corn plant will begin to determine yield potential. It is during this period when the number of kernels around the ear, or ear girth, is determined. For this reason, minimal stress at this time is essential for plants to maximize ear girth potential.

V6 to VT represents the rapid growth period when the plant will be utilizing nutrients from the soil at the maximum rate. Corn plants develop leaves based on their relative maturity and growing environment. Locally adapted hybrids in the United States Central Corn Belt (Iowa, Illinois, Indiana, and Ohio) typically develop 20-21 leaves. Early maturing hybrids may have as few as 11-12 leaves at full maturity, and the latest maturing hybrids in tropical environments may develop 30 or more leaves. Between VE and V14, each new collared leaf will appear after the accumulation of approximately 46 to 56 GDUs depending on the hybrid.

During the mid-vegetative stages (V6-V12) the corn plant begins a period of very rapid internode elongation. The growing point moves above the soil surface around V6, and the plant is now susceptible to environmental or mechanical injuries that may damage the growing point. As a result of this rapid growth, the lower three or four leaves, including the first true leaf, may become detached from the stalk and decompose.

Rapid growth syndrome occurs when corn leaves fail to unfurl properly and the whorl becomes tightly wrapped and twisted. It most commonly occurs at the V5-V6 growth stage, but can be observed as late as V12. It is generally associated with an abrupt transition from cool temperatures to warmer conditions, resulting in a sharp acceleration in plant growth rate. The rapidly growing new leaves are unable to emerge and will cause the whorl to bend and twist as they try to force their way out. As with many weather-related stress effects, it is common for some hybrids to be more prone to rapid growth syndrome than others. Twisted whorls can also have other causes, most notably herbicide injury. Growth regulators and acetamides are the herbicides most commonly associated with twisted whorls or “buggywhipping.” Other herbicides may also interfere with leaf unfurling in rare cases. Leaves of affected plants usually unfurl after a few days. Newly emerged leaves will often be yellow as a result of being twisted up inside the whorl, but will green up quickly once exposed to sunlight. Affected leaves may be wrinkled near the base and will remain that way throughout the growing season. Development of individual plants may be slightly delayed due to rapid growth syndrome however yield is unlikely to be reduced.

CORN GDU REQUIREMENTS

<table>
<thead>
<tr>
<th>Vegetative (50-80 d)</th>
<th>Reproductive (55-60 d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Planting**
 - R1 Silking
 - ~1200-1400 GDU's

- **R6 Black Layer**
 - ~2000-2700 GDU's

- **Base 50 GDU formula**
 - GDU formula for corn: (Daily high + daily low)/2 – 50 F
 - Daily high limit: 86 F
 - Daily low limit: 50 F

- **Corn typically requires about 120 GDU to emerge**

In the Central Corn Belt of the United States, the number of rows of kernels around the cob is established at about V7 stage at which time the ear shoots, and/or tillers and tassel are visible, as well as the tassel. For Northern latitude hybrids this occurs earlier (V6), and for tropical hybrids it happens later. There will always be an even number of rows, as a result of cellular division. Most mid-maturity hybrids average 14, 16 or 18 rows of kernels. Lower row numbers are highly correlated to early maturity hybrids. The absolute number is strongly controlled by hybrid genetics and often consistent within a hybrid at a given location. Severe metabolic stresses during these stages, such as timing of some herbicide applications, may reduce the number of kernel rows produced.

Soon after tasseling (VT), the plant begins the “reproductive” stages of growth. The transition from vegetative development to reproductive development (VT to R1) is a crucial period for grain yield determination. At this point, the upper ear shoot becomes dominant. VT occurs when the last tassel branch has emerged and is extended outward. VT overlaps with R1 when visible silks appear before the tassel is fully emerged. Vegetative development is now complete and maximum plant height is nearly achieved. Stalk cells will continue to lignify to improve stalk strength as the plant transitions to reproductive development (R1).

R1 officially starts when silks are visible outside the husks and typically occurs a couple of days after tasseling. Once a pollen grain lands on a silk (pollination), a pollen tube forms and grows through the style and reaches the ovule where it penetrates the ovary. Once a pollen grain lands on a silk (pollination), a pollen tube forms and grows through the style and reaches the ovule where it penetrates the ovary.
takes about 24 hours to go down the silk to the ovule. Silage growers should note the date when corn plants silk (R1) and count ahead about seven weeks to begin checking fields for kernel maturity. The old thumb rule that corn will reach silage maturity in 35-45 days (900 GDUs) after silking was based around silage being harvested at 70% moisture (30% dry matter). Modern hybrids have improved late-season plant health so to avoid effluent and also significantly increase starch deposition, it is now recommended to delay harvest of healthy plants until the kernels are closer to ¾ milk line. Most of the difference between hybrids of different relative maturities is between emergence and silking, not from silking to the 62-68% whole-plant moisture (38-32% DM) that is considered ideal for corn silage.

Corn grain yield can be thought of as a 2-step process. The first step is to establish the maximum potential yield or the maximum number of fertilized ovules that can be produced. The second step is to convert the maximum number of fertilized ovules to harvestable kernels. During all stages of the corn life cycle, meristematic cells are extracting nutrients, water and energy from the corn plant. These cells must be properly fed every day. If the corn plant faces a stress in which it cannot supply all of these necessary nutrients, water and energy, some of these meristematic cells die. For grain yield, stress factors become particularly important during pollination when the meristematic cells are the ovules and young, fertilized embryos, and during early grain fill when these young fertilized embryos are gaining size and weight. Approximately 85% of total grain yield is related to the total number of kernels produced per acre and approximately 15% of the total grain yield is related to the weights of these kernels.

The length of the ear (number of kernels per row) is determined the last few weeks prior to tasseling. Stress at this time may reduce the number of kernels produced in each row; however, the ultimate kernel number is determined during and after pollination. Water and fertility requirements are significant during these stages and shortages significantly reduce yield. While number of kernel positions is determined earlier in the corn plant’s development, number of kernels actually set is largely determined near the time of pollination. Once pollination begins, maximum yield potential has been set within the plant and only environmental factors such as drought, late-season insects, disease, and environmental events (e.g. hail, high wind) negatively influence final harvestable yield. Reduction in kernel number may result from incomplete pollination due to asynchronous pollen shed and silking (“silk delay”), ovary dysfunction due to low water potential, or abortion of the newly formed embryo due to insufficient carbohydrate availability from reduced plant photosynthesis (shading or disease).

From full canopy through the reproductive period, any shortage of sunlight is potentially limiting to starch yield. When stresses such as low light limit photosynthesis during kernel stalk fill, corn plants remobilize stalk carbohydrates to the ear. This may result in stalk quality issues and lodging at harvest. Sensitive periods of crop development, such as flowering and early grain fill, are when plants are most susceptible to stresses, including insufficient light, water, and/or nutrients.

Corn originated in the central highlands of Mexico and adapted during its evolution to the predominant climatic conditions of this region, consisting of warm days and cool nights. Research has shown that above-average night temperatures during reproductive growth can reduce corn yield both through reduced kernel number and kernel weight. A 1983 University of Guelph study examined the effect of temperature on grain fill. After kernel number had already been set, plants were grown in outdoor pots and then moved into controlled-temperature growth chambers 18 days after silking. The lowest temperature regime (77°F day, 59°F night) resulted in the greatest grain yield per plant as well as the longest grain fill duration. Increasing night temperature to 77°F significantly reduced yield per plant. Increasing the day temperature to 95°F also resulted in lower yield per plant, regardless of night temperature.

Current research supports two hypotheses that may explain why higher night temperatures during the grain filling period reduce grain yield: 1) the rate of respiration in the corn plant increases, requiring more sugar for energy thus making less sugar available for deposition as starch in the kernel and 2) higher temperature accelerates the phenological development of the corn plant so the corn plant matures sooner. Although higher night temperatures undoubtedly increase the rate of respiration in corn, research generally suggests that accelerated phenological development is likely the primary mechanism affecting corn yield.

Blester stage (R2) occurs 10 to 14 days after silking. Developing kernels are about 85 percent moisture, resemble a blister, and the endosperm and the inner fluid are clear. Stress-related kernel abortion may occur during this time. Kernels fertilized last (near the tip) are often aborted first (nosing back). Kernel abortion risk is highest within the first 10-14 days after pollination or until the kernels reach R3. At this stage, maximum ear length is achieved. Silks from fertilized kernels dry and turn brown. Unfertilized silks may be visible among the brown silks.

R3 occurs 18 to 22 days after silking when the kernels are about 80 percent moisture, inner fluid is milky white from accumulated starch (endosperm). The embryo and the endosperm are visually distinguishable upon dissection. Stress-related kernel abortion is still possible at this time.

Dough stage (R4) occurs 24 to 28 days after silking. Kernels are about 70 percent moisture and the inner fluid thickens to a pasty, dough-like consistency and they have attained around one-half of their mature dry weight. Hybrid specific cob color (white, pink, light or dark red) begins to develop. Husks begin to turn brown on the outer edges. Stress during this stage does not generally cause kernels to abort, but it can reduce the starch accumulation rate and average kernel weight.

Dent stage (R5) occurs 35 to 42 days after silking and accounts for nearly one half of the reproductive development time. Kernels are comprised of a hard starch outer layer surrounding a soft starch core. An indentation (dent) forms at the top of the kernel when the softer starch core begins to lose moisture and shrinks. The amount of denting that occurs is dependent on genetics and growing conditions. Flint hybrids grown in South America and Europe generally produce very little to no dent because the kernels contain primarily hard, vitreous starch and do not collapse. To optimize starch concentrations, corn silage will typically be harvested during late dent stage, but prior to black layer formation (R6).
Monitoring kernel “milk” line is a practical approach to field evaluations for timing of silage harvest. The milk line forms as a visible separation between hard starch and soft starch. It forms at the crown of the kernel and progresses toward the base, or kernel tip. Milk line stages are generally referred to as ¼ milk line, ½ milk line, or ¾ milk line as it moves toward the cob. The total time for this movement is related to temperature, moisture availability, and hybrid genetics but typically there is about a week between each stage. At a ¼ milk line, kernels are about 55 percent moisture and have accumulated about 45 percent of their total dry matter, and about 90 percent of total dry matter by R5.5 (½ milk line). Healthy plants can accumulate from 0.6 to 1.0 percentage points of starch in corn silage every day until reaching black layer (R6). Harvesting corn silage at too early a milk line stage will severely reduce starch concentrations.

Kernel physiological maturity is achieved at the R6 (black layer) stage in about 60 to 65 days after silking. Kernel moisture is approximately 35 percent and kernels have reached their maximum dry weight. The milk line, or hard starch layer, has advanced to the kernel tip. Cells at the tip of the kernel lose their integrity and collapse causing a brown to black abscission layer to form, commonly referred to as “black layer”. Black layer formation progresses from the tip of the ear to the base. If the corn plant dies prematurely from disease or a killing frost (prior to physiological maturity) the black layer still forms, but may take longer, and yield may be slightly reduced. The “premature” kernel black layer formation is related to the reduction or termination of sucrose (photosynthate) available to the developing kernels.

R6 is very near the ideal high-moisture corn (or snaplage) harvest kernel moisture of 30-34% to capture the most energy from the kernel and the cob. Once the black layer forms, starch and moisture can no longer move in or out of the kernel, with the exception of moisture loss through evaporation. Drying rates are normally 0.4-0.8% moisture per day. Ideal combining harvest moisture for corn is 15-20%.
Growth and development through the vegetative stages.

All corn follows a similar pattern of development with variations based on hybrids, seasons, planting dates and locations. This illustration shows the key phases of corn development through the vegetative (V) stages. Most of the information comes from “How a Corn Plant Develops,” by Iowa State University and applies to a central Iowa corn hybrid (see www.extension.iastate.edu/hancock/info/corn.htm). A look at corn development from tasseling through harvest will appear in a future issue.

Germination and emergence (VE)

Once planted, corn seeds absorb water from the soil and begin to grow. VE (emergence) comes when the coleoptile (spike) pushes through the soil surface. Corn plants can emerge within five days in ideal heat and moisture conditions. But under cool and wet — or even under very dry conditions — they can take more than two weeks to emerge. The growing point (stem apex) is 1 to 1.5 inches below the surface. The seminal root system is growing from the seed. The seminal roots do much of the early work, but growth slows after VE as nodal roots begin to grow.

Tips: Longer-season hybrids generally have more yield potential than shorter-season hybrids. However, growers should choose hybrids based on the local growing season and specific field environment. Cool temperatures restrict nutrient absorption, slowing growth. Banding fertilizer can help early growth. Shallow planting may provide a warmer environment for seeds when planting early.

V3 Stage

At V3, the growing point is still below the surface. The stalk (stem) hasn’t elongated much. Root hairs are growing from the nodal roots as seminal roots cease growing. All leaves and ear shoots the plant will ever produce form from V2 to about V5. A tiny tassel forms at the tip of the growing point. Above-ground plant height typically is about 8 inches.

Tips: The growing point is greatly affected by soil temperatures. Cold soils may increase the time between leaf stages, increase the total number of leaves formed, delay tassel formation and reduce nutrient availability. At this time, hail, wind and frost have little effect on the growing point or final grain yield. However, flooding can kill the corn plant. Weed control reduces competition for light, water and nutrients.

V6 Stage

The growing point and tassel rise above the soil surface about the V6 stage. The stalk begins to elongate. The nodal root system grows from the three to four lowest stalk nodes. Some ear shoots or tillers are visible. Tiller (or sucker) development depends on the specific hybrid, plant density, fertility and other conditions.

Tips: Precise fertilizer placement is less critical as roots spread. Watch for signs of nutrient deficiencies. Foliar or soil applications may help, but deficient soils are best corrected before symptoms appear. Nitrogen sidedressing may help up to about V6 in moist soil. Begin to scout for insect damage such as lodged plants (corn borers) or leaf feeding (corn borers).

V9 Stage

Dissection of a V9 plant shows many ear shoots (potential ears). These develop from every above-ground node except the last six to eight nodes below the tassel. Lower ear shoots grow fast at first, but only the upper one or two develop a harvestable ear. The tassel begins to develop rapidly. Stalks lengthen as the internodes grow. By V10, the time between new leaf stages shortens to about every two to three days.

Tips: At about V10, rapid increases in nutrient and dry weight accumulation begin. This continues into the reproductive stages. Soil nutrient and water requirements are very high. This is to meet greater demands due to the increased growth rate at this stage.

V12 Stage

The number of ovules (potential kernels) on each ear and the size of the ear are determined at the V12 stage. The number of kernels per row isn’t determined until about a week before silking, at about V17. The top ear shoot is still smaller than the lower ear shoots, but many of the upper ears are close to the same size.

Tips: Moisture or nutrient deficiencies from V10 to V17 are critical. They can seriously reduce kernel numbers and ear size. Earlier-maturing hybrids progress through growth stages in less time and produce smaller ears than later-maturing hybrids. Thus early-maturing hybrids need high plant densities for maximum yields.

V15 Stage

Silks from the basal ear ovules elongate first. Silks from the ear tip ovules follow. This illustration represents about eight to nine days of reproductive organ development. Brace roots (aerial nodal roots) grow from the nodes above the soil surface to help support the plant and take in water and nutrients during the reproductive stage.

Tips: The plant is about a week away from silking. Ear development is rapid. Stress can delay ear and ovule development more than tassel development. Such a delay means a lag between pollen shed and silking. Severe stress may delay silking until after pollen shed, resulting in zero or small ovules.

V18 Stage

Silks from the basal ear ovules elongate first. Silks from the ear tip ovules follow. This illustration represents about eight to nine days of reproductive organ development. Brace roots (aerial nodal roots) grow from the nodes above the soil surface to help support the plant and take in water and nutrients during the reproductive stage.

Tips: The plant is about a week away from silking. Ear development is rapid. Stress can delay ear and ovule development more than tassel development. Such a delay means a lag between pollen shed and silking. Severe stress may delay silking until after pollen shed, resulting in zero or small ovules.

VT Stage

The VT stage arrives when the last branch of the tassel is completely visible. VT begins about two to three days before silk emergence. The plant is nearly at its full height. Pollen shed begins, lasting one to two weeks. The time between VT and R1 can fluctuate considerably depending on the hybrid and the environment.

Tips: With the tassel and all leaves exposed, the plant is extremely vulnerable to hail from VT to reproductive phase 1 (R1). Total removal of leaves can devastate yield potential. It ovules aren’t fertilized they produce no kernel on the cob.
How corn develops:
Reproduction through maturity

R1 stage: Silking
The R1 stage begins when silk is visible outside the husks. Pollination occurs when these moist silks catch falling pollen grains. Pollen takes about 24 hours to move down the silk to the ovule where fertilization occurs. The ovule becomes a kernel. Generally, all silks on an ear are pollinated in two to three days. The silks grow 1.0 to 1.5 inches each day until fertilized. The R1 kernel is almost engulfs in cob materials and is white on the outside. The inner material is clear with little fluid present.

Tips: The number of ovules fertilized is determined at this stage. Those not fertilized will degenerate. Environmental stress at this time can cause poor pollination and seed set. Stress, in particular, affects the silks and pollen grains, which may result in a scatter-grained ear or an ear with a barren tip. Watch for corn rootworm and pollen grains, which may result in a scatter-grained ear or an ear with a barren tip. Watch for corn rootworm beetles feeding on the silks and treat if necessary. At this stage, potassium uptake is about complete. Nitrogen and phosphorus uptake is rapid. Nutrient content of the leaf point, potassium uptake is about complete. Nitrogen and phosphorus uptake is rapid. Nutrient content of the leaf point, potassium uptake is about complete. Nitrogen and phosphorus uptake is rapid. Nutrient content of the leaf point, potassium uptake is about complete. Nitrogen and phosphorus uptake is rapid. Nutrient content of the leaf point, potassium uptake is about complete. Nitrogen and phosphorus uptake is rapid. Nutrient content of the leaf point, potassium uptake is about complete. Nitrogen and phosphorus uptake is rapid. Nutrient content of the leaf point, potassium uptake is about complete. Nitrogen and phosphorus uptake is rapid. Nutrient content of the leaf point, potassium uptake is about complete.

Starch has just begun to accumulate in the embryo side. With maturity, the hard starch layer and line will advance toward the cob. Accumulated starch is hard above the line but still soft below the line. Tips: Stress at this stage will reduce yields by reducing kernel weight. At the beginning of R5, kernels have about 35 percent moisture content. Growth Point® magazine, March 2010.

R2 stage: Blister
(10-14 days after silking)
R2 kernels are white on the outside and resemble a blister. The endosperm and its now-abundant inner fluid are clear. The embryo is still developing, but it now contains a developing miniature corn plant. Much of the kernel has grown out from the surrounding cob materials. The cob is close to full size. Silks are darkening and beginning to dry out. Starch has just begun to accumulate in the watery endosperm. Kernels are beginning to accumulate dry matter. Seed-fill is beginning.

Tips: Nitrogen and phosphorus are accumulating rapidly and relocating from vegetative to reproductive parts of the plant. The kernels are about 85 percent moisture and will dry down from this point.

R3 stage: Milk
(18-22 days after silking)
The R3 kernel is yellow outside, while the inner fluid is now milky white due to accumulating starch. The embryo is growing rapidly. Most of the R3 kernel has grown out from the surrounding cob. Silks are brown and dry or becoming dry.

Tips: The kernels, well into their rapid rate of dry matter accumulation, are about 80 percent moisture. Cell division within the endosperm is essentially complete, so growth is mostly due to cell expansion and starch-fill. Final yield depends on the number of kernels that develop and the final size or weight of the kernels. Stress can still impact yield by reducing both factors.

R4 stage: Dough
(24-28 days after silking)
Continued starch accumulation in the endosperm causes the milky inner fluid to thicken to a pasty consistency. Usually four embryonic leaves have formed as the embryo has grown dramatically from the R3 stage. The shelled cob is a light red to pink. Toward the middle of R4, the embryo will stretch across more than half of the width of the kernel side. Just before R5, kernels along the length of the ear begin to dent or dry. The fifth (last) embryonic leaf and the lateral seminal roots have formed. If this seed is planted, these five embryonic leaves will appear the following season after germination and VE.

Tips: The embryo continues to develop very rapidly. Kernels are about 70 percent moisture and have accumulated about half their mature dry weight.

R5 stage: Dent
(35-42 days after silking)
At R5, all or nearly all kernels are dented or denting. The shelled cob is dark red. The kernels are drying down from the top, where a small hard layer of starch is forming. This starch layer appears shortly after denting as a line across the back of the kernel (the non-embryo side). With maturity, the hard starch layer and line will advance toward the cob. Accumulated starch is hard above the line but still soft below the line.

Tips: Stress at this stage will reduce yields by reducing kernel weight. At the beginning of R5, kernels have about 35 percent moisture content.

R6 stage: Physiological maturity
(35-45 days after silking)
By the R6 stage, kernels have attained their maximum dry weight or dry matter accumulation. The hard starch layer has advanced completely to the cob. A black or brown abscission layer forms, moving progressively from the tip ear kernels to the basal kernels of the ear. It’s a good indication of physiological maturity and signals the end of kernel growth. The husks and many leaves are no longer green, although the stalk may be.

Tips: A hard early frost before the R6 stage may halt dry matter accumulation and cause premature black layer formation. This could reduce yields by causing delays in harvest (frost-damaged corn is slower to dry). To reduce potential frost problems, choose a hybrid that matures about three weeks before the average date of the first killing frost.

Kernel moisture averages 30 to 35 percent, but this can vary considerably between hybrids and environmental conditions. Safe storage requires 13 to 15 percent moisture. Growers usually let the crop dry in the field before harvesting.
which typically occurs 2 to 4 weeks after R6. The rate of field drying after R6 is highly dependent on air temperature, air movement, relative humidity, and grain moisture content. Drydown is also highly related to hybrid characteristics, such as ear orientation, plant density, tightness and length of husks, and kernel hardness. As a general rule, it requires 30 GDUs to remove one point of moisture from the grain early in the drying process (30 to 25 percent), and 45 GDUs to remove one point of moisture late in the drying process (25 to 20 percent). Grain drying rates will vary between hybrids and environments. For example, corn dries better on a 50°F (10°C) sunny day than on a 50°F (10°C) rainy or cloudy day. Both days have the same number of heat units, but the additional energy provided by the radiant energy on a sunny day dramatically improves the drying process.

DETERMINING CORN LEAF STAGES

The “leaf collar” system developed at Iowa State University is the method most widely used by extension and seed company agronomists to determine leaf stages. With this method, each leaf stage is defined according to the uppermost leaf whose leaf collar is visible. This makes it easier to distinguish between stages, rather than using other indicator systems, such as plant height or exposed leaves. These other systems include the leaf tip number and the plant height systems (used by herbicide labels). The number of leaves exposed or plant height systems are not as accurate as the leaf collar system. Plants will respond to different environments/stresses and may be older than they appear if looking only at plant height. The leaf number system does not require collar formation to count, so it is open to interpretation, and may lead to less consistent staging.

The first part of the collar that is visible is the back, which appears as a discolored line between the leaf blade and the leaf sheath. The oval shaped first leaf, or “seed leaf,” is the reference point for counting upward to the top visible leaf collar. The oval seed leaf is counted as the first leaf of a corn plant when staging vegetative growth. If a plant has four visible leaf collars, then it is defined as being at V4. Normally a plant at the V4 stage will have parts of the fifth and sixth leaves visible, but only four leaves with distinct collars.

Another way to determine the plant stage is to identify the sixth leaf. Find the node at the soil surface, and if the soil has not been disturbed (no cultivation), this will typically be the sixth node. Identify the leaf attached at the sixth node (leaf 6) and count successive collared leaves above that to determine the vegetative stage. A field is defined as being at a given growth stage when at least 50% of the plants show collars for that leaf number.

SCOUTING FOR PROBLEMS

It should go without saying that walking fields and digging roots (e.g. monitoring corn rootworm) pays big dividends. Insects can cause standability issues, rob nutrients, and increase ear molds and premature plant death. The value of above- and below-ground pest management will be based on crop rotation, hybrid selection, class of insects that are of primary concern, available insecticide control methods and tillage systems. With all the options available, this area of management is best discussed with consulting agronomists and seed or chemical company representatives.

Walking corn fields is important to monitor for yield-robbing pests and diseases. From emergence to V5, attention should be paid to seed placement and emergence issues along with looking for early insects (e.g. brown stink bugs, corn flea beetle, slugs), diseases (Goss’s Wilt, Stewart’s Wilt) or weed pressure that could limit yield. From tasseling to silage harvest maturity, second-generation insects, foliar diseases and mold issues are important to monitor.
COMMON CORN INSECTS

European Corn Borer
Japanese Beetles
Black Cutworm
Fall Armyworm
Wireworms
Southwestern Corn Borer
Western Bean Cutworm
Spider Mites
Corn Earworms
Corn Rootworm
White Grubs
Aphids

CORN FOLIAR DISEASE DIAGNOSIS AND MANAGEMENT TIPS

- Select resistant hybrids
- Manage residue properly
- Time planting
- Apply fungicide in high-risk fields

Eyespot Lesions
Northern Leaf Spot
Southern Leaf Blight
Gray Leaf Spot
Common Rust
Northern Leaf Blight
Southern Rust
Goss’s Wilt
Storm damage to the growing corn plant includes root lodging and stalk breakage from wind, along with leaf loss and stem bruising from hail. Yield potential of hail-damaged crops depends largely on the growth stage, remaining plant population and the type and severity of damage.

Recommendations from the University of Minnesota are to wait three to five days following a hail storm to allow time for regrowth before better evaluation of plant survivability given the growing point of corn will be about 3/4 of an inch below the soil surface until the V5-V6 growth stage. For hail damage in more mature plants, they will regrow if the growing point is still healthy. Plants with damaged growing points or stalks broke below the growing point will not recover. Locate the growing point by splitting a stalk down the center; a healthy growing point will be white to light green in color and firm in texture. If the growing point has been damaged, bacteria will often invade the plant and the growing point will be brown and soft and these plants will not recover. Bruising of stalks by hail limits the function and contribute to grain filling. Plants with lost tassels.

For adequate pollination of neighboring ears, this corresponds to 2,500 pollen grains per silk, indicating great potential for adequate pollination of neighboring plants with lost tassels. The effect of stalk breakage on grain yield will depend on a number of factors: 1) the percent of plants broken, 2) the distribution of broken plants, 3) the location of the break on the stalk, and 4) the growth stage of the crop. Yields are affected least when the stalk breaks above the uppermost ear. Plants adjacent to broken plants will partially compensate and produce more grain weight per plant because of less competition, especially for sunlight. Yields are reduced more when the stalk is broken below the uppermost (top) ear compared with when the stalk is broken above the ear. At the tassel stage, the potential size of the second ear has been determined with the plant expecting to fill kernels on the top ear and, under most situations, there usually is little or no grain produced on the second ear. At this stage, the plant cannot adjust the number of kernels that can be produced on the second ear.

FUNGICIDES

Keeping corn free of stresses caused by leaf diseases and stalk rots is important to achieving maximum yield. Diseases like Gray Leaf Spot, Fusarium & Southern Leaf Blight, Common & Southern Rust, Anthracnose and Eyespots can quickly reduce a crop’s green leaf area, photosynthetic capacity and grain (starch) yield. In addition, reduced photosynthesis can cause depletion of stalk carbohydrates during ear fill, resulting in higher risk of stalk rots and lodging. The goal of fungicide application is to protect yield by preventing infection on the ear leaf and above from these diseases as the plant enters the reproductive stage. Fungicides have various modes of action including electron blockers within the mitochondria or specific enzyme blockers which limit the fungal ability to metabolize nutrients to fuel their growth. The need for foliar fungicide applications for corn disease management has increased due to a number of factors, from the increase in continuous corn acres, and reduced tillage practices, to variable environmental conditions. Factors influencing hybrid yield response to
foliar fungicide include: environmental conditions and weather patterns, disease pressure, previous crop and tillage, hybrid disease susceptibility, hybrid maturity and planting date. There are strong opinions on both sides of the fungicide debate. Recommendations from the University of Wisconsin suggest that there is not a consistent economic return from fungicide usage and that growers should focus primarily on hybrid resistance to foliar diseases. Results of a three-year joint research study by the University of Minnesota and Pioneer further reinforces the need to focus on hybrid selection. The study showed that the probability of a positive economic return from using a fungicide was directly related to the susceptibility of a hybrid to the predominant leaf diseases in that growing environment. It is clear that corn grain and corn silage growers should fine-tune their hybrid selection process by assessing hybrid disease ratings for foliar diseases.

Contrast that with research from the University of Illinois, which conducted 1,241 agronomy fungicide trials over the past three growing seasons. While the crop was under high disease pressure anywhere from a 15-20 bushel per acre yield response to 0.6 bushel per acre yield response. Plant pathologists suggest this hybrid selection process by assessing hybrid disease ratings for foliar diseases. There have been limited fungicide studies with corn silage, although benefits derived for grain corn should similarly benefit silage crops. A 2007 field trial conducted by University of Wisconsin extension specialists showed that fungicide treatments resulted in a 0.7 ton increase in silage dry matter yield, a 2% unit increase in starch content and reduced stalk lodging. There was also a 1.8% unit increase in NDFD but it is debatable if NDFD is really impacted by fungicide application. While these increases were not statistically significant, they do appear biologically and economically encouraging. This study also found no significant reduction in mold, yeast and fungus, but it should be noted that even the untreated plots were essentially devoid of mold contamination. The ability of fungicides to reduce mold needs further research as they would not prevent spores infecting the ear by entering silking channels during pollination.

Silage growers have also questioned if fungicide application would have any negative effect on the anaerobic bacteria plant populations that are responsible for fermentation in silages that are not inculcated with a commercial product. The fact is that foliar fungicides inhibit aerobic fungi and do not have an effect on the anaerobic, natural (ephiphytic) plant-borne bacteria that initiate silage fermentation.

Practical issues to discuss with an agronomist or chemical sales professional when selecting a fungicide include: 1) disease threshold considerations, 2) recom m e n d e d timing of application(s), 3) any aerial application limitations in your State, 4) residual activity, 5) curative properties, 6) adjuvant recommendations, 7) redistribution capability to ensure coverage deep in the leaf canopy and 8) required time from application to harvest. Research to date suggests that foliar fungicides do not consistently reduce disease or increase yield in hail-damaged corn. While there is still debate on the subject, University of Minnesota plant pathologists agree with studies at Iowa State University and the University of Illinois that there is no consistent increase in corn diseases due to hail damage, with the exception of common smut, Goss’s leaf blight and wilt, and possibly stalk rots and none of these diseases are managed effectively with foliar fungicides. The most damaging diseases affecting corn after hail are bacterial and fungal diseases and have no effect on these bacterial diseases. Do not expect fungicides to always return a profit, nor to necessarily reduce mold and mycotoxin problems. However, there is data suggesting that fungicides can be a very effective tool for managing foliar diseases and deliver healthier plants with higher grain (starch) content. Modern fungicides should certainly be considered as a defensive or insurance-type management tool, especially in challenging, high yield environments with hybrids susceptible to foliar disease.

Soil nutrient tests prior to planting can inform growers of the various amounts of nutrients in the soil which are available or the value of nutrient availability. Soil test credits can be subtracted, or credited from the total nutrient requirement to grow a corn silage crop based on yield goals. Credits can be taken for previous legume crops, manure application and N in irrigation water. Corn silage fertility programs must compensate for the large amount of nutrients removed with the whole plant. Soil fertility can improve the forage quality of corn silage primarily by enhancing grain yields. The starting point is proper soil sampling to determine the potential of nutrient availability in the soil. Only a portion of this nutrient availability can be determined largely by expected yields. The table below shows the nutrient amounts removed per ton of harvested silage. Crop availability of nutrients in the soil varies depending on factors such as soil texture and composition and other various factors. Phosphorus is removed at the rate of 35 lbs/10 tons of silage harvested. Maintaining soil plant-available phosphorus values at or near 20 ppm (Bray Test) or 16 ppm (Olsen Test) has been shown to optimize yield responses. Potassium soil test levels should be maintained at 100 to 150 ppm. At 150 bushels/acre yield, there are approximately 187 lbs of K₂O in the grain and stover or about 11 lbs of K₂O per ton of silage. Corn grain removes approximately 18 lbs. per bushel of nitrogen per bushel harvested, and stover production requires a half-bushel for each bushel of grain produced. Nitrogen rates should be increased by about 20 lbs/ acre compared to grain requirements to help maximize nutrient yields of the corn silage crop. Only a portion of this amount needs to be supplied by N fertilizer; N is also supplied by the soil through mineralization of soil organic

FERTILITY

Soil nutrient tests prior to planting can inform growers of the various amounts of nutrients in the soil which are available or the value of nutrient availability. Soil test credits can be subtracted, or credited from the total nutrient requirement to grow a corn silage crop based on yield goals. Credits can be taken for previous legume crops, manure application and N in irrigation water. Corn silage fertility programs must compensate for the large amount of nutrients removed with the whole plant. Soil fertility can improve the forage quality of corn silage primarily by enhancing grain yields. The starting point is proper soil sampling to determine the potential of nutrient availability in the soil. Only a portion of this nutrient availability can be determined largely by expected yields. The table below shows the nutrient amounts removed per ton of harvested silage. Crop availability of nutrients in the soil varies depending on factors such as soil texture and composition and other various factors. Phosphorus is removed at the rate of 35 lbs/10 tons of silage harvested. Maintaining soil plant-available phosphorus values at or near 20 ppm (Bray Test) or 16 ppm (Olsen Test) has been shown to optimize yield responses. Potassium soil test levels should be maintained at 100 to 150 ppm. At 150 bushels/acre yield, there are approximately 187 lbs of K₂O in the grain and stover or about 11 lbs of K₂O per ton of silage. Corn grain removes approximately 18 lbs. per bushel of nitrogen per bushel harvested, and stover production requires a half-bushel for each bushel of grain produced. Nitrogen rates should be increased by about 20 lbs/ acre compared to grain requirements to help maximize nutrient yields of the corn silage crop. Only a portion of this amount needs to be supplied by N fertilizer; N is also supplied by the soil through mineralization of soil organic
Feed Store Harvest Grow Plant

63% of plant N taken up by flowering
37% of plant N taken up by post-flowering

Grain N:
62% from post-flowering uptake
38% remobilized N

IN-SEASON NITROGEN FERTILITY
- One of the most important nutrients.
- Most prone to loss by leaching from:
 - High rainfall
 - Excessive irrigation
 - De-nitrification into the atmosphere

EFFICIENCY OF NITROGEN USE BY THE CROP (HIGHEST TO LOWEST)
1. Sprinkler applied during rapid growth phases (V6-VT)
2. Side-dress just before rapid growth phases
3. Post-plant incorporated
4. Pre-plant incorporated
5. Fall application for next year’s crop

IN-SEASON FERTILITY
- “Starter Fertilizer” near the root zone is beneficial to early plants
- Fertilizer should be placed in the “2 inch x 2 inch band” around the seed
- Fertilizer placed too close can cause salt damage to a young plant
- Roots are not attracted to the fertilizer, so it needs to be placed where roots will be

COMMON NUTRIENT DEFICIENCY SYMPTOMS IN CORN
- NITROGEN
 - Uptake continues until near maturity.
 - Can be translocated from plant parts to develop grain
 - Nitrogen deficiency appears as a yellowish coloration in a “V” pattern progressing from leaf end to collar and from lower to upper leaves.

- POTASSIUM
 - Need is completed soon after silking
 - Can be translocated from plants to develop grain
 - Potassium deficiency appears as yellow and brown coloration of the leaf margins which occurs first on the lower leaves and can progress to the upper leaves.

- PHOSPHORUS
 - Uptake continues until near maturity.
 - Can be translocated from plant parts to develop grain
 - Phosphorus deficiency appears as a purple coloration of the lower leaves.

- SULFUR
 - Sulfur deficiency is a general yellowing similar to nitrogen deficiency, except the young upper leaves have more pronounced symptoms because sulfur is not mobile in the plant.

- ZINC
 - Zinc deficiency can be induced by copper hoof treatment programs in wastewater from dairy operations
 - Corn has high zinc requirements compared to other crops
 - Zinc may be deficient in sandy soils, other low organic soils such as those with topsoil removed or soils with high pH.
 - Seedlings may show deficiencies during cool, wet weather.
 - Zinc deficiency appears on the upper leaves. The yellowing between the veins begins in the leaf middle and progresses outward.

Nutrient Requirements per Ton of Silage Harvested (30% Dry Matter)

<table>
<thead>
<tr>
<th>Plant Nutrient</th>
<th>Pounds Required per Ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>8</td>
</tr>
<tr>
<td>Phosphate (P₂O₅)</td>
<td>4</td>
</tr>
<tr>
<td>Potassium (K₂O)</td>
<td>8</td>
</tr>
<tr>
<td>Sulfur</td>
<td>1</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Nitrogen for grain development originates from both remobilized N (from vegetative tissues) and continued N uptake from the soil. Ensuring a season-long N supply is critical for maximizing yield of starch. By silking maturity (R1), corn has taken up approximately 63% of its N requirement for the season. The remainder is taken up during the grain-fill period (R1 to R6). For high grain yield potential, 140 to 210 lbs N/acre is needed to support grain development. Approximately 38% of this demand is remobilized from vegetative tissue with the remainder supplied from continued uptake after flowering. In high yield environments, post-flowering N uptake can range from 85 to 130 lbs N/acre.
MANAGING WEEDS

Weeds compete with corn for light, nutrients and water, reduce silage feed quality at the later stages of growth and can harbor destructive insect pests. A vigorous well-growing crop is the best defense against weed infestations and competition. Studies show that the “critical period” for preventing yield-reducing weed interference in corn is from the V2 to V3 growth stage until V12 (approximately three weeks through eight weeks after planting).

A combination of cultural, mechanical, and chemical weed control procedures will typically give the best results. Cultural practices that keep fence lines, ditches and wasteland areas free of weeds will lower rates of weed infestations, as will thoroughly cleaning tillage and harvest equipment before entering or leaving a field. Cultivation will sever or bury weeds and is effective for herbicide-resistant weeds. Chemical control is effective when weed populations are high and cultivation is not economical or feasible.

Herbicides can provide cost-effective weed control while minimizing labor. However, improper herbicide use may result in crop injury, poor weed control, herbicide resistant weeds, environmental contamination, or health risks. Herbicides kill plants in different ways and must meet several requirements to be effective. It must come in contact with the target weed, be absorbed by the weed, move to the site of action in the weed, and accumulate sufficient levels at the site of action to kill or suppress the target plant. Herbicides may be classified according to selectivity (nonselective, grass control, broadleaf control, etc.), time of application (pre-plant incorporated, pre-emergence, or post-emergence), translocation in the plant (contact or systemic), persistence, or site of action. Understanding how herbicides work provides insight into how to use the chemicals and helps diagnose performance problems and related injury symptoms. The best source of information for herbicide use is the herbicide label. Always apply herbicides according to label directions.

Grain yield winners in the NCGA contest typically have more than one mode of action in their weed management program. Most included use is the herbicide label. A pre-emergence followed by post-emergence herbicide program is likely to be the most reliable and effective under a wide range of growing environments.

IMPACT OF MOISTURE AND GROWING ENVIRONMENT

The influence of growing conditions (especially moisture) is a major source of the nutritional variability seen within hybrids across years and locations. Researchers at the University of Illinois attributes 19% of the grain yield performance to hybrid genetics, with the remaining influence being the result of weather (27%), nitrogen (26%), previous crop (10%), plant population (8%), tillage (6%) and growth regulators (4%).

A high-yielding corn crop requires between 20 to 24 inches of water in the Midwest and upwards of 28 to 30 inches in the more arid West. One inch of water per acre is about 27,000 gallons. A corn crop requiring 24 inches of moisture would need about 648,000 gallons of water. If that crop yields a national average of 175 bushels per acre, each bushel would require about 3,700 gallons of water.

Crop water use, often referred to as evapotranspiration (ET) consists of soil evaporation (E) and crop transpiration (T). In practical terms, ET describes water in (or on) soils or plants converted to atmospheric water vapor. Corn plants extract water from the soil and transport it to small openings in the leaves (stomata) where it exits into the atmosphere. Transpiration cools corn plants to optimize photosynthesis and growth. The ratio of evaporation to transpiration changes as crops mature and shade more soil. When crops are young and leaf surface area is small, soil evaporation accounts for most of the moisture loss. As the corn plant matures and canopies the soil, transpiration becomes a significant cause of moisture loss.

The corn crop’s need for water is an interaction between plant, soil and atmospheric factors. The amount of water available for corn plants from the soil is determined by soil texture, water holding capacity, infiltration rate and ease of giving up moisture. For example, the higher the soil texture concentration in the soil, the harder it is for the plant to extract water. Atmospheric factors include the amount of solar radiation, air temperature, humidity and wind speed. High solar radiation and air temperatures, low humidity, clear skies and high wind rates ET. Cloudy, cool and calm days reduce evapotranspiration.

Crop factors such as stage of development, rooting depth, planting density and amount of crop residue all impact ET from the crop standpoint. Crop residue can have a significant effect on evapotranspiration of water from the soil. A University of Nebraska study found that residue on the soil surface saved 3 to 4 inches of irrigation water compared to bare soil plots. During the vegetative growth of the corn plant, it is relatively drought tolerant and can survive upwards of 60 percent soil water depletion in the root zones without a significant impact on grain yield. However, silage yields will be reduced due to shorter plants when corn is moisture-stressed during the vegetative growth stages. The corn plant needs the most moisture from about silking through the blister stage. After blister stage, the plant is again fairly immune to water deficiency and irrigation can be terminated when the kernel milk line is at about 50 percent (R5.5).

Drought can result in plants ranging from barren plants with no ears or starchy content to varying levels of starch (grain)
CORN YIELD RESPONSE TO WATER

- Under water-limited conditions, corn grain yields typically are associated positively with total seasonal water use.
 - At 20 inches of available water (stored soil water + seasonal precipitation + irrigation), potential grain yield should be near 200 bu/acre.
 - With only 10 inches, maximum of 50 bu/acre can be expected.
- Water stress during critical reproductive growth (pollination) significantly lowers yield potential.
- Understanding this relationship helps one make agronomic management decisions regarding hybrid selection, plant population, fertilization rate, and irrigation timing.

Research at Cornell University suggests that moderately cool and dry growing conditions improve corn silage nutritional quality and slight moisture stress stimulates seed (grain) production. Cool temperatures (especially at night) appear to inhibit secondary cell wall development which can negatively impact fiber digestibility. The growing conditions before and after silking (R1) affects corn silage nutritive values in different ways. In general, dry (or limited irrigation) conditions during the vegetative stages of plant growth shortens plant stature, but enhances fiber digestibility (Neutral Detergent Fiber Digestibility, NDFD). Higher than normal temperatures tend to moderate the positive effect that low moisture has on improving NDFD. Wetter than normal conditions during vegetative growth result in lower NDFD. The relationship of grain yield to total seasonal crop water use or evapotranspiration (ET) from Grassini et al (2009) is shown in the graph.

- Full Water: 226 bu/A
- Vegetative Stress: 164 bu/A
- Flowering Stress: 138 bu/A
- Grain Fill: 127 bu/A

growth, while improving whole-plant yield (taller plants), tends to reduce fiber digestibility.

Data from Michigan State University silage plots harvested in a relatively wet growing season (2006) compared to the same hybrids harvested from the same plot in a relatively dry growing season (2007). Hybrids averaged 6.5 points higher in 24-hour NDFD in the drought year. It was interesting to note that, as expected, the highest NDFD in both seasons was a brown midrib (BMR) hybrid (hybrid #10), but that nearly half of the conventional hybrids grown in the drought year were higher in NDFD than the BMR grown in the wet year. Even if the laboratory estimate of NDFD of the non-BMR hybrids look higher than the BMR hybrid, the BMR silage will tend to drive higher intakes among cattle because of the lower lignin and fragility of the BMR cell walls. It is not biologically valid to compare BMR to non-BMR hybrids with regards to NDFD alone. Perhaps a more biologically pertinent comparison would be to compare starch content (which dilutes the fiber) and amount of undigestible NDF (uNDF) which has been shown to be highly correlated with dry matter intake potential of the feedstuff.

During the reproductive growth stages, environmental growing conditions appear to exert little impact on NDFD, but does have considerable influence on kernel starch deposition (grain yield), starch: fiber ratios and ultimately total plant digestibility. University and seed company research shows minimal genetic differences (3-4 percentage units) between non-BMR hybrids for NDFD. The large variation in NDFD observed from farm-to-farm and season-to-season are the result of environmental factors such as growing conditions and harvest timing. This is why corn silage growers in the Midwest and East, with fewer irrigated acres and more weather variability, struggle more with quantifying and managing corn silage digestibility.

It has been well established that growing environment is 3-times more influential on fiber digestibility than hybrid genetics and that moisture-stress is 7-times more important to fiber digestibility (or uNDF) than heat units.

Corn breeders are very interested in the interaction between genetics and environment (GxE). If GxE (in a statistical sense) is significant, it means hybrids grown in different environments could rank differently for any particular total plant yield. University and seed company research shows minimal genetic differences (3-4 percentage units) between non-BMR hybrids for NDFD. The large variation in NDFD observed from farm-to-farm and season-to-season are the result of environmental factors such as growing conditions and harvest timing. This is why corn silage growers in the Midwest and East, with fewer irrigated acres and more weather variability, struggle more with quantifying and managing corn silage digestibility.

It has been well established that growing environment is 3-times more influential on fiber digestibility than hybrid genetics and that moisture-stress is 7-times more important to fiber digestibility (or uNDF) than heat units. Corn breeders are very interested in the interaction between genetics and environment (GxE). If GxE (in a statistical sense) is significant, it means hybrids grown in different environments could rank differently for any particular total plant yield. University and seed company research shows minimal genetic differences (3-4 percentage units) between non-BMR hybrids for NDFD. The large variation in NDFD observed from farm-to-farm and season-to-season are the result of environmental factors such as growing conditions and harvest timing. This is why corn silage growers in the Midwest and East, with fewer irrigated acres and more weather variability, struggle more with quantifying and managing corn silage digestibility.

It has been well established that growing environment is 3-times more influential on fiber digestibility than hybrid genetics and that moisture-stress is 7-times more important to fiber digestibility (or uNDF) than heat units. Corn breeders are very interested in the interaction between genetics and environment (GxE). If GxE (in a statistical sense) is significant, it means hybrids grown in different environments could rank differently for any particular total plant yield. University and seed company research shows minimal genetic differences (3-4 percentage units) between non-BMR hybrids for NDFD. The large variation in NDFD observed from farm-to-farm and season-to-season are the result of environmental factors such as growing conditions and harvest timing. This is why corn silage growers in the Midwest and East, with fewer irrigated acres and more weather variability, struggle more with quantifying and managing corn silage digestibility.

It has been well established that growing environment is 3-times more influential on fiber digestibility than hybrid genetics and that moisture-stress is 7-times more important to fiber digestibility (or uNDF) than heat units. Corn breeders are very interested in the interaction between genetics and environment (GxE). If GxE (in a statistical sense) is significant, it means hybrids grown in different environments could rank differently for any particular total plant yield. University and seed company research shows minimal genetic differences (3-4 percentage units) between non-BMR hybrids for NDFD. The large variation in NDFD observed from farm-to-farm and season-to-season are the result of environmental factors such as growing conditions and harvest timing. This is why corn silage growers in the Midwest and East, with fewer irrigated acres and more weather variability, struggle more with quantifying and managing corn silage digestibility.

It has been well established that growing environment is 3-times more influential on fiber digestibility than hybrid genetics and that moisture-stress is 7-times more important to fiber digestibility (or uNDF) than heat units. Corn breeders are very interested in the interaction between genetics and environment (GxE). If GxE (in a statistical sense) is significant, it means hybrids grown in different environments could rank differently for any particular total plant yield. University and seed company research shows minimal genetic differences (3-4 percentage units) between non-BMR hybrids for NDFD. The large variation in NDFD observed from farm-to-farm and season-to-season are the result of environmental factors such as growing conditions and harvest timing. This is why corn silage growers in the Midwest and East, with fewer irrigated acres and more weather variability, struggle more with quantifying and managing corn silage digestibility.

It has been well established that growing environment is 3-times more influential on fiber digestibility than hybrid genetics and that moisture-stress is 7-times more important to fiber digestibility (or uNDF) than heat units. Corn breeders are very interested in the interaction between genetics and environment (GxE). If GxE (in a statistical sense) is significant, it means hybrids grown in different environments could rank differently for any particular total plant yield. University and seed company research shows minimal genetic differences (3-4 percentage units) between non-BMR hybrids for NDFD. The large variation in NDFD observed from farm-to-farm and season-to-season are the result of environmental factors such as growing conditions and harvest timing. This is why corn silage growers in the Midwest and East, with fewer irrigated acres and more weather variability, struggle more with quantifying and managing corn silage digestibility.

It has been well established that growing environment is 3-times more influential on fiber digestibility than hybrid genetics and that moisture-stress is 7-times more important to fiber digestibility (or uNDF) than heat units. Corn breeders are very interested in the interaction between genetics and environment (GxE). If GxE (in a statistical sense) is significant, it means hybrids grown in different environments could rank differently for any particular total plant yield. University and seed company research shows minimal genetic differences (3-4 percentage units) between non-BMR hybrids for NDFD. The large variation in NDFD observed from farm-to-farm and season-to-season are the result of environmental factors such as growing conditions and harvest timing. This is why corn silage growers in the Midwest and East, with fewer irrigated acres and more weather variability, struggle more with quantifying and managing corn silage digestibility.

It has been well established that growing environment is 3-times more influential on fiber digestibility than hybrid genetics and that moisture-stress is 7-times more important to fiber digestibility (or uNDF) than heat units. Corn breeders are very interested in the interaction between genetics and environment (GxE). If GxE (in a statistical sense) is significant, it means hybrids grown in different environments could rank differently for any particular total plant yield. University and seed company research shows minimal genetic differences (3-4 percentage units) between non-BMR hybrids for NDFD. The large variation in NDFD observed from farm-to-farm and season-to-season are the result of environmental factors such as growing conditions and harvest timing. This is why corn silage growers in the Midwest and East, with fewer irrigated acres and more weather variability, struggle more with quantifying and managing corn silage digestibility.
CORN SILAGE SUMMARY

Corn silage yield and quality are determined by the interaction of G x E x M (Genetics, Environment, Management)

SILAGE YIELD

is primarily driven by biomass (plant height at the ear) and starch content.
- Starch (grain) typically contributes half of silage dry matter yield.
- Silage yield is influenced by: harvest timing (more mature kernels delivering higher tonnage), seed genetics and planting date in addition to the more obvious growing environment factors of weather, soil, and fertility.

FEED QUALITY

is primarily driven by starch content and secondly by fiber digestibility.

FIBER DIGESTIBILITY

is influenced 3-times more by growing conditions than genetics.
- Dry, cool weather, particularly during vegetative growth, tends to increase fiber digestibility.
- Hot, wet growing conditions tend to decrease fiber digestibility.
- BMR genetics were introduced to improve fiber digestibility because very little variation in fiber digestibility exists between non-BMR hybrids grown in the same environment and harvested at the same maturity.

STARCH CONTENT

is primarily driven by genetics and growing environment.
- Drought and/or disease during plant reproductive growth lowers starch content.
- High chopping increases starch concentration (and often improves fiber digestibility).

STARCH DIGESTIBILITY

refers to the amount of starch digested in the rumen and the intestines.
- Starch digestibility is influenced by kernel maturity and extent of kernel processing at the chopper.
- The smaling process, in particular the length of time in storage, significantly increases starch digestibility.
- Very little difference in starch digestibility exists among dent hybrids grown in North America when harvested at similar kernel maturities. These small genetic differences are dwarfed by the influence of harvest maturity, processing, and storage effect.

Silage growers should focus on genetics (G) with appropriate disease/trait package and yield stability for your growing environment. Choose genetics that deliver high biomass yield (taller plants) and high starch content. For the highest fiber digestibility, choose BMR genetics. Beyond that, the growing environment (E) (moisture, heat units, disease) is the primary driver of yield and quality. At harvest, management (M) around harvest timing (higher yield with more mature kernels), chop height and degree of kernel processing (biggest influence on starch digestibility) are the primary influencers.

trait. Compare this to environmental influence on genetics, meaning they will rank similar across environments, but the relative magnitude of difference will depend on the particular environment. It could also indicate the absolute values will change with no change in the relative hybrid differences between environments. The impact of GxE explains why seed companies do so much testing to determine the area of adaptation of hybrids. There is no indication that nutritional characteristics are any more susceptible to environmental interactions than either grain or whole-plant yield.

The figure below shows the relative silage yield, starch content and 24-hour NDFD of the same hybrid grown in 14 locations in Michigan in 2009. This clearly demonstrates why it is not valid to attribute hybrid genetics as the primary cause of nutritional differences when comparing hybrids grown on different farms. This is also why seed companies and university plots only compare hybrids grown in the same location (side-by-side).

Research by corn breeders suggest that to be 95% confident in selecting the best hybrid for silage yield or nutritional traits, approximately 20 direct, side-by-side comparisons (in the same plots), are required, preferably across multiple years to account for unique yearly environmental effects. Data from a single plot is almost meaningless due to variability caused by factors including soil compaction, previous crop history, fertility/manure history, soil type, water availability, tillage, and insect damage.

To put a single plot in perspective, on average soil with 150 bushels/acre yield potential, a hybrid with a 2-ton per acre (30% DM) advantage has only a 60% chance of being the superior silage yielding hybrid. The odds of selecting the superior yielding silage hybrid increase to 95% with a 2-ton yield advantage demonstrated across 30 individual silage plots.
Alfalfa is very small with about 220,000 seeds per pound. This makes proper planting and seed placement critical to the success of a stand. Alfalfa germination and seedling emergence occur in 3-7 days depending upon soil moisture and temperature conditions. Alfalfa seed can germinate at temperatures above 37°F but optimum soil temperature is between 65-77°F. Higher soil temperatures facilitate increased metabolic activity and water movement into the seed. Under good growing conditions, the seedling is fully developed by 10 to 15 days after planting.

Within four weeks of germination, root hairs on the radicle become infected with a nitrogen fixing bacteria and begin to form nodules. Atmospheric nitrogen fixation occurs within these nodules, which results in the availability of nitrogenous compounds for their host plants. Only Rhizobium meliloti will infect alfalfa root hairs as other strains of the bacteria cannot infect alfalfa. Approximately 5% of alfalfa root hairs become infected with the bacteria, but only about 30% of these infections result in nodule formation. The alfalfa plant can utilize soil nitrogen should nodulation not occur as in the case of low soil pH or heavy nitrogen (manure) application during seeding year. Within about four months, the lowermost buds have been completely pulled into the ground forming the crown. Winterhardy varieties have several nodes pulled below the soil surface in the seeding year. This is termed contractile growth and involves a shortening and widening of the cells in the upper portion of the primary root as a result of carbohydrate storage. This pulls the lower stem nodes 1-3 inches beneath the soil surface and improves winter survival of the crowns.
Spring growth occurs from the crown buds relying on carbohydrate reserves contained in the root and crown. Following harvest, subsequent plant growth is primarily from the crown buds, but can also be from the auxiliary buds (where the leaf attaches to the stem) if cutting is high enough. Vegetative growth of alfalfa is comprised of three stages: early vegetative, mid vegetative, and late vegetative. During early vegetative growth alfalfa has insufficient leaf area to produce enough energy from photosynthesis to support growth. The carbohydrates and nutrients stored in the root and crown supply the energy needed for regrowth. When the alfalfa plant has reached approximately eight inches tall, leaf area and photosynthesis have increased. This will supply adequate energy for continued growth and replenishment of root and crown carbohydrate reserves. The maximum number of stems per plant and weight of each stem are determined during vegetative development. Important factors that impact plant growth during this stage include soil pH, fertility, moisture, and pest pressure. The growing conditions during the first two weeks following harvest are critical to determining the number of stems on each plant. A high leaf-to-stem ratio results in higher nutritional value (more protein from leaves and less fiber from the stem). Leaf-to-stem ratio is lower for spring compared to summer regrowth and also declines as the plant matures.

ALFALFA GROWTH STAGES

<table>
<thead>
<tr>
<th>MATURITY INDEX</th>
<th>STATE OF MATURITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Stem length less than 6 inches</td>
</tr>
<tr>
<td>1</td>
<td>Stem length 6 to 12 inches</td>
</tr>
<tr>
<td>2</td>
<td>Stem length greater than 12 inches</td>
</tr>
<tr>
<td>3</td>
<td>Early bud, 1-2 nodes with visible buds, no flowers or seed pods</td>
</tr>
<tr>
<td>4</td>
<td>Late bud, more than 2 nodes with visible buds, no visible flowers/pods</td>
</tr>
<tr>
<td>5</td>
<td>Early flower, 1 node with at least 1 open flower</td>
</tr>
<tr>
<td>6</td>
<td>2 or more nodes with an open flower</td>
</tr>
</tbody>
</table>

Source: Cornell University.
increases in maturity from vegetative to full flower. Total alfalfa yield is a cumulative function of number and weight of each individual stem. Shortening days and declining temperatures in the fall cause varieties to change vegetative growth patterns. This typically results in winter hardening when dormant alfalfa varieties alter their metabolism in preparation for winter by using sugar as an anti-freeze to protect the crown, crown buds and roots in soil temperatures as low as 17°F. During the winter, plant tissue below the soil surface is insulated from cold air temperatures by soil and layers of snow. Without snow cover, extreme cold may cause the soil temperature to drop below 17°F, which can kill or injure plants. Injured plants become less vigorous and are slow to recover in the spring.

The Cornell University plant growth staging scheme used in assessing stand development is shown in the accompanying charts.

A soil test should be used to determine fertility needs before ground preparation. Phosphorus (P) is critical for healthy root development and potassium (K) is needed for high yields. If needed, broadcast and incorporate lime, P and K for new seedings. Alfalfa has a high requirement for nitrogen because it is high protein forage. There is no need to apply nitrogen fertilizer because rhizobium bacteria fix nitrogen from the air in root nodules. Soil pH levels above 6.5 provide the best environment for nodule bacteria to fix nitrogen. Alfalfa has a high requirement for potash (K₂O), and high yields require maintenance applications in most soils. Try not to

Growers are sometimes tempted to over-seed additional alfalfa into a thin stand. The problem with over-seeding alfalfa stands over one year old with additional alfalfa seed is autotoxicity. Alfalfa plants exhibit autotoxicity designed to reduce competition by the production of chemical compounds which are toxic to other alfalfa plants. When an alfalfa stand is killed by winterkill, spraying or plowing, these compounds are released into the soil. The result is arrested root development in new alfalfa seeds planted into the same field. The length of time these alfalfa-toxic compounds are active is influenced by soil type (more tightly bound in heavy soils), temperature (warmer soils speed microbial degradation), rainfall (more rain facilitates leaching) and tillage practices (plowing helps dilute and reduce levels).

The degree of autotoxicity is directly related to the amount of time between killing the old stand and establishing the new stand. The University of Wisconsin suggests the best way to avoid autotoxicity is to rotate to some other crop for at least a year before seeding the same field back to alfalfa. All other options can lead to potential yield losses in the newly established stand. If alfalfa directly follows alfalfa, it is advised to kill the established stand in the year (fall) prior to (spring) seeding. If alfalfa is planted in the same year in which the established stand was killed, a late-summer seeding is the best option followed by waiting at least three weeks before re-seeding. Planting alfalfa into an established stand to increase declining yields is not recommended. Research conducted at the University of Missouri showed significant yield loss when new seedings were planted within 8-16 inches of an existing plant.
exceed 200 lbs K₂O per application to avoid luxury consumption. It is not recommended to seed alfalfa-grass in fields where soil test potassium levels are medium to low. While the initial stand may perform well, once the grass becomes established their root system will take up potassium to the detriment of the alfalfa. Response to potassium is unlikely when soil test for K₂O exceeds 150 ppm. Response to phosphorus is unlikely when soil test for P exceeds 15 ppm. Sulfur deficiency is becoming more common with reduced environmental sulfur emissions. Sulfur levels should be closely monitored in high yield situations, particularly in low organic matter soils. Alfalfa may also respond to annual applications of boron, especially in lighter-textured soils.

Manure application can damage stands both from physical crown damage and by inhibiting nodule bacterial activity. If manure must be applied, choose the oldest stands or those with the most grass. Manure analysis can vary greatly, but in general it takes ten tons of liquid dairy manure to replace the K₂O removal of one ton of alfalfa dry matter, but only three tons to offset the P₂O₅ usage. Be careful of over-application of phosphate (P₂O₅) when manure is a high proportion of the fertilization program. Soil fertility research has shown a tremendous effect on alfalfa yield and persistence, however, there does not appear to be much of an effect on fertility on alfalfa nutritional quality.

A dense canopy of alfalfa and a frequent cutting schedule will tend to keep most weeds in check. However, some weeds build in growth when alfalfa is dormant, including winter annual broadleaves like chickweed, henbit, mustard species, and cheatgrass in the plains and western states. There are several options for controlling weeds in established stands, including herbicides which can be applied in-season or during the dormant period. Some herbicide options have long residuals. Carefully consider weed species and rotational restrictions when making a herbicide selection for an older stand. Using a glyphosate resistant alfalfa variety along with glyphosate herbicide often provides the most flexibility for timing of applications and is frequently the most economical system for maximizing yield, quality, and stand life.

Manure application can damage stands both from physical crown damage and by inhibiting nodule bacterial activity. If manure must be applied, choose the oldest stands or those with the most grass. Manure analysis can vary greatly, but in general it takes ten tons of liquid dairy manure to replace the K₂O removal of one ton of alfalfa dry matter, but only three tons to offset the P₂O₅ usage. Be careful of over-application of phosphate (P₂O₅) when manure is a high proportion of the fertilization program. Soil fertility research has shown a tremendous effect on alfalfa yield and persistence, however, there does not appear to be much of an effect on fertility on alfalfa nutritional quality.

DISEASE AND INSECT CONSIDERATIONS

Alfalfa growers should place considerable emphasis on selecting alfalfa varieties with disease resistance relative to whether or not alfalfa is grown. The major diseases for which seed companies provide resistance ratings include stem and crown diseases, anthracnose; wilting diseases, (Bacterial wilt, Fusarium wilt and Verticillium wilt); and root rot diseases Phytophthora and Aphanomyces (Race 1 and Race 2). Root rot diseases can be important selection criteria in heavier soils; therefore it is important to understand the soil type and drainage in fields where alfalfa is planted. Alfalfa weevil larvae, potato leafhopper, aphids and other pests can limit yield, quality and regrowth of alfalfa stands. The potato leafhopper (PLH) is the most impactful alfalfa insect pest in the Eastern half of North America. There is no reliable method to forecast damage, so scouting fields and using a sweep net is the only effective method to monitor PLH system. Once visible symptoms of hopperburn and plant stunting become evident, it is too late for corrective action. The greatest impact on the crop is yield reduction. Severe damage can reduce crude protein content, taproot carbohydrate reserves and plant regrowth. Harvesting can help reduce egg, nymph and adult populations, and harvesting severely damaged alfalfa stands may be the only method to initiate regrowth of stems.

If scouting and spraying is not controlling leafhoppers, then planting a leafhopper-resistant variety is a logical choice. The threshold for spraying a leafhopper-resistant alfalfa variety is about three times that of non-leafhopper resistant alfalfa. New seeding of a leafhopper-resistant variety should be scouted and managed similar to a non-leafhopper-resistant variety. As a thumb rule, spraying is justified when leafhopper counts per ten sweeps of a sweep net exceeds the average plant height in inches. For example, if a field has eight inches of regrowth and ten representative sweeps yield 16 leafhoppers, spraying is justified since leafhopper count exceeded plant height in inches in the field was planted to a leafhopper-resistant variety. A leafhopper count three times the plant height is the threshold to consider spraying; or in this example at least 24 leafhoppers per ten sweeps. Completing the list of most important pest resistance ratings are aphid and nematode resistance. These are not considered major problems in the Midwest, or the Eastern U.S. and Canada, but are a more significant problem in Western alfalfa production regions.

WEED CONTROL IN ESTABLISHED STANDS

The approval of several fungicides for use on alfalfa has spurred interest in this management tool to help reduce stem and leaf diseases, allowing for higher harvestable yields. The response to fungicides in university and industry trials has been very inconsistent across locations and cuttings. Despite the lack of consistent and statistically significant results from small plot research, farmer testimonial suggests many producers are observing a positive response to fungicide application. Even though growers ability to measure small differences in yield may be challenging, it appears that growers are convinced of the economic advantage of fungicide treatment given it only requires about 0.1 to 0.2 tons per acre of added yield to justify the price of fungicide and application when the crop is selling for upwards of $200 to $250 per ton.

The required yield improvement necessary to justify fungicide use is also less if growers are adding it to tank mixes of insecticide that they are already applying to control leafhoppers. Positive grower observations may also be the result of greater variability in their production- sized fields compared to smaller plots. Grower testimonials seem to suggest many already applying to control leafhoppers. Positive grower testimonials may also be the result of greater variability in their production- sized fields compared to smaller plots. Grower testimonials seem to suggest many already applying to control leafhoppers. Positive grower testimonials may also be the result of greater variability in their production- sized fields compared to smaller plots.
YIELD AND NUTRITIONAL IMPACT OF GROWING ENVIRONMENT

Alfalfa genetics play a relatively small role in nutritional quality differences. Rather, it is growing environment and harvest maturity that are the biggest drivers. It is well documented that environmental factors have a smaller effect on quality than on yield. Most factors that limit plant development (e.g., drought, cold weather) tend to reduce yields but promote higher quality through altering leaf:stem ratio. A higher leaf:stem ratio is nutritionally advantageous (if they are retained through harvest) because alfalfa leaves contributing over 90% of the plant protein as well as exhibit high NDFD compared to the stem.

Growing conditions which can negatively impact yield include low temperatures without snow cover, winter freezing and thawing, ice sheeting, low soil moisture levels, and spring desiccation of developing shoots and stems. The biggest environmental factors influencing alfalfa yields are temperature, water deficiency, solar radiation, and soil fertility, a distant fourth. Growing conditions that promote the highest alfalfa quality are long day lengths, cool nights and moderately dry weather. Warm, wet weather tends to produce the poorest quality alfalfa. Cool, wet growing conditions produce high quality alfalfa due to low NDF and low lignification. However, getting the crop harvested in these conditions can be a challenge with harvest delays resulting in advancing plant maturity. Cool, wet conditions also increase the potential for higher respiration or leaching losses and fermentation/spoilage problems from increased exposure to soil-borne fungi and bacteria.

Solar radiation (light) is the only environmental factor promoting both yield and quality because light promotes carbohydrate production. Shortening photoperiod in the fall has a negative effect on digestibility but is somewhat offset by cooler temperatures. Cloudy weather reduces photosynthesis causing low sugar and mobilization of nutrients resulting in higher proteins; both of which limit pH decline if the crop is harvested as silage. There are also more 5-carbon pentose sugars in fall harvested alfalfa further contributing to the fermentation challenge of producing 3-carbon lactic acids. Drought conditions reduce yield, but the resulting stunted, yet leafy plants are generally higher in protein and digestibility due to the higher leaf:stem ratio. The digestibility advantages would be greater if not offset by increased lignification due to high temperatures that typically accompany drought conditions.

Temperature accelerates plant development. Warm weather accelerates NDF development and lignification (every 1°C increase in temperature will generally decrease digestibility of forages 0.3-0.7 percentage units). High heat units experienced by the crop following first cutting is why second cutting in North America tends to be lower in NDFD than first or subsequent cuttings. This is also the reason why forages produced in more northern latitudes or higher elevations (cooler nights) tend to be of higher quality. In the spring, light and temperature are positively correlated until June 21, after which light decreases and temperature increases, reducing alfalfa quality. Fall growing conditions are characterized by declining temperatures and decreasing day length and light which are favorable for producing higher quality alfalfa.

<table>
<thead>
<tr>
<th>Cutting</th>
<th>NDF Digestibility (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
</tr>
</tbody>
</table>

Source: 30-hour NDFD data from legumes (13261 samples), mixed grass/legumes (10158 samples), and grasses (2407 samples) analyzed by NIR at Cumberland Valley Analytical Services.
MATURITY AND MOISTURE

Recommendations vary with different silage crops and storage structures (e.g. drier in vertical stave/sealed silos for prevent excess effluent). Proper maturity assures adequate fermentable sugars for silage bacteria and maximum nutritional value for livestock. Maturity and/or wilting times also have a tremendous impact on moisture to help exclude oxygen and thus reduce porosity of the silage. For “dairy quality” forage, the “ideal” harvest maturity/moisture for healthy corn silage plants is 3/4 milk line (>62% moisture), alfalfa silage at mid-late bud (55-65% moisture) (reduced lignin varieties can be harvest more mature), grass silage when stems start elongating (55-65% moisture), and snaplage/earlage (right at kernel blacklayer when kernels are about 34-36% moisture).

LENGTH OF CUT

It is difficult to offer generalized chop length recommendations because proper length depends on several factors including: 1) the need for physically effective fiber (peNDF) levels in the ration, 2) particle size of the other dietary ingredients, 3) the type of storage structure, and 4) silage compaction capabilities and unloading methods (e.g. silo unloaders, bunker facers). Other factors affecting chop length include the need to chop finer to damage corn kernels if on-chopper processing is not available or if chopping longer to compensate for particle reduction from bagging or feed mixing. In general, shorter chop tends to improve compaction in the storage structure and also increases surface area of fiber (or kernels) to improve rate of digestion by rumen bacteria or intestinal enzymes. Longer chop increases the peNDF of the feed; however, excessive length can contribute to sorting by cattle in the feed bunk. It is best to work with the harvesting crew and nutritionist to decide on the proper compromise; recognizing that particle length in the final ration is what is most important. Start at the feed bunk and work backwards as to the amount of each feedstuff in the ration and how much peNDF each one of those feeds need to contribute to the entire diet.

CORN SILAGE

Slage growers should note the date when corn plants silk (R1) and count ahead about seven weeks to begin checking fields for kernel maturity. The old thumb rule that corn will reach silage maturity in 35-45 days (900 GDUs) after silking was based around silage being harvested at 70% moisture (30% dry matter). Modern hybrids have improved late-season plant health so to avoid effluent and also significantly increase starch deposition, it is now recommended to delay harvest of healthy plants until the kernels are closer to ¾ milk line. Most of the difference between hybrids of different relative maturities is between emergence and silking, not from silking to the 62-68% whole-plant moisture (38-32%DM) that is considered ideal for corn silage.

HOW TO DETERMINE MILK LINE

1. Break several representative ears in half.
2. Visually look at milk line of the kernel in your hand holding the ear tip.
3. Sometimes visually determination can be misleading so a more reliable method is to “bite” an individual kernel from the tip of the kernel until you reach the hard starch area. This will give a very accurate determination of how far down the milk line has reached.
Modern corn genetics with vastly improved late-season plant health, coupled with technologies such as foliar fungicides, allow for a plant that retains fiber digestibility much later into the growing season. Late-season plant health is also advantageous in growing seasons lagging in heat units. Fiber digestibility will be maintained longer into the fall even as harvest is delayed to allow the plant to deposit additional starch. Harvesting corn silage at the ideal stage requires coordination between the days required to plant, the days required to harvest and the maturity of the hybrids planted.

It is common for the corn plant to dry down in the fall about 0.5-1.0 points of moisture per day, depending on drying conditions. It is also common for corn silage to deposit 0.5-1.0 points of starch per day until the kernel reaches physiological maturity at black layer. Starch deposition is what is significantly contributing to reducing the moisture in the whole plant and the also increasing the tonnage and energy density of the silage.

The continued health of the overall plant allows for continued photosynthesis and the deposition of sugar through the vascular system of the plant. In essence it is the “laying down of starch” in healthy plant that reduces the water content of the kernel. Thus, healthy plants are quicker at lowering their kernel moisture that those that are impaired, drought, disease, etc... The transformation of sugar to starch is dependent on the pathway remaining not only open but also steady fed, in effect, a two way valve, at the kernel attachment to the cob. It is clear what can happen when the inputs lag (aborted kernels near the tip) or where supply (and extremity, farthest away from the source), slow the process (which can even induce premature black layer).

Most people assume the kernel “air” dries from the pericarp, but prior to black layer the general consensus is that there is very little moisture movement across the pericarp. After black layer the two-way valve now closed), kernel dry down is through the pericarp and dependent upon environmental weather and genetics. Within hybrids there appears to be varying genetic difference in levels of porosity affecting their ability to dry down quicker than comparable maturity hybrids.

During corn maturation, the dry matter of the entire plant, being composed of stover and grain, increases for two reasons:

- First, the stover is drying as leaves dry and stalks brown. Given that NDF digestibility decreases as plant tissue dies, NDFD also should be dependent primarily on dry matter content of the entire plant.
- Second, grain, being the driest portion of the plant, is still being deposited when plants are healthy. The ear always is drier than the stover, so an increase in the ear to stover ratio increases not only the total plant dry weight but also the percentage of DM in the total plant. This could indicate that waiting until the plant is over 30% DM might not prevent seepage if the plant still is fully green and growing but the kernel content has reached the black layer stage as sometimes happens in geographies producing very tall, healthy plants.

Overall, this supports the idea that kernel milk line should drive the time to start harvesting silage, not plant DM. And secondly, high chop decisions to potentially improve NDFD should be based on stover DM and the amount of dead tissue (perhaps of the lowest foot of the plant in particular) and not on DM content of the entire plant.

Research studies clearly show that fiber digestibility declines only minimally in healthy corn plants as they dry down from 30% dry matter to 26% dry matter (70% to 62% moisture). The combination of healthier plants in the fall, the need for starch to increase yield and digestibility and the ability to achieve higher compaction densities in bunkers/piles has allowed growers to harvest corn silage at ¾ milk line rather than ½ to ¼ milk line which was common in the past. Producers who lack the ability to process (roll) kernels on the chopper may have to harvest at earlier kernel maturities and/or shorten the chop length to ensure adequate kernel processing at the cutter head.

HIGHER HARVEST DRY MATTER INCREASES STARCH CONTENT IN HYBRIDS WITH EXCELLENT LATE-SEASON PLANT HEALTH

![Graph showing the relationship between harvest dry matter and starch content in hybrids with excellent late-season plant health.](image)

Source: Dr. Fred Owens, DuPont Pioneer Senior Research Scientist

- **Starch Digestibility (Processed)**
 - **Values % of DM or of Nutrient**
 - **DM content of the stover, not on DM content of the full plant (including the ear) because it should vary primarily due to health of the stover portion of the plant.**
 - **NDF Digestibility declines only minimally**
 - **Sugar + Organic acid Content**
 - **Starch increases by as much a 1% point per day**
 - **Target the harvest DM in this area to capture more starch with little impact on NDFD**

![Graph showing the relationship between silage dry matter and starch content.](image)

Source: Dr. Fred Owens, DuPont Pioneer Senior Research Scientist
HIGH CHOPPING

Harvesting corn silage at higher chop heights is used by some producers to increase starch content and improve neutral detergent fiber digestibility (NDFD). Research shows that increasing chop height by about 12 inches can increase starch content by 2-3% units and increase NDFD by 2-4% units, depending on the specific hybrid and growing season. The impact on yield depends to some extent on the yield potential of the hybrid, but in general, expect yield (35% DM basis) of the stover to drop by about 300 pounds per acre for every inch of higher chop height.

In some areas, such as California, it is a common practice to chop as low as 2-3 inches; whereas in other regions like the Northeast, chop operators harvest higher so as not to risk damaging equipment by hitting stones. There is less potential gain in quality by raising chop height if normal chop height is already high (greater than 8-10 inches).

It typically does not make economic sense to reduce silage yields by high chopping brown mid-rb (BMR) hybrids because BMR stalks are already very high in fiber digestibility. However, given that growing environment during the vegetative growth stage also has an impact on the NDFD of BMR genetics, there could be instances where wet growing conditions could justify high chopping BMR, especially for very high production herds.

Not all hybrids will behave the same when high-chopped as there appears to be a significant hybrid-by-environment interaction. This implies that hybrids will respond differently to high chopping depending upon growing conditions. One approach to determining the potential impact is to hand-harvest 5-10 representative plants at normal chop height and at high chop height at about one to two weeks prior to harvest. The samples can then be sent to a laboratory and analyzed for NDF digestibility to see if high chopping was worth the yield loss.

High-chop corn can be a practical management tool to boost corn silage NDFD, especially when hay or haylage already in storage is low in fiber digestibility. It can also be used by growers with more corn than needed for silage (at normal chop heights) but no economical way to harvest the crop for grain. Raising chop height will also allow the crop to fit into limited storage space and provide the nutritionist with higher quality corn silage.

KERNEL PROCESSING

Kernel processing of corn silage has long been popular in Europe and started to gain acceptance in North America in the late-90’s with the introduction of the kernel processor (on-board roller mill) as standard equipment. The combination of higher dietary corn silage inclusion rates coupled with higher dry matter silages to capture more starch has focused the need to assure aggressive kernel damage.

There has been much debate about what level of kernel processing is acceptable. It was complicated by the lack of a lab method to quantify the extent of kernel damage and lack of accepted processing standards. This changed with the commercialization of a standard laboratory assay (Ro-Tap Kernel Processing Score) developed by Pioneer in conjunction with the U.S. Dairy Forage Research Center and Dairyland Laboratories (Arcadia, Wisconsin). Pioneer openly shared the kernel processing protocol with commercial laboratories around the world and is now offered by many as a routine analysis.

While it is helpful to have a post-harvest, standardized laboratory measurement of kernel damage, it is equally important to have an easily-implemented field method to make processing adjustments as the crop is being harvested. Pioneer has developed a simple field test using a 32-ounce cup. Producers are encouraged to sample several loads each hour by filling the cup level with silage; spreading the sample out and quickly picking out every whole and half kernel. If that number exceeds 2-3 kernels, it is important to discuss with the chopper operator how to improve kernel processing. If left unattended, the result will be a loss in energy as unprocessed kernels escape ruminal and intestinal digestion. Validation of degree of kernel damage can be further accomplished by collecting fecal samples from 10-12 cows and submitting to a lab for fecal starch analysis. The goal is to have less than 3-5% starch in feces. Levels higher than that could indicate poor processing of corn silage (or other starch sources) resulting in inefficient use of dietary starch in addition to possibly predisposing cows to maladies such as hemorrhagic jejunal (or bowel) syndrome (HJS or HBS).

There are several factors that chopper operators can check to improve processing: length of chop (longer typically more difficult to damage kernels), kernel mill wear (life of 300-1000 hours depending upon mill), mill gap (1-3mm depending upon chop length and kernel maturity), aggressiveness of the rolls, and perhaps the most important, roller mill differential (typically 20-40%). There have also been recent innovations in roller mill design and differential speed including Shredder (Claas) and KernelStar Technology (John Deere).
DROUGHT-STRESSED CORN

On average, corn utilizes 24-27 inches of water per acre during the growing season. Timing and duration of drought stress will determine yield loss. Silk emergence is the most critical time to avoid drought stress with early vegetative growth being the least critical period for drought stress. Repeated moisture stress during the silk to tassel stage can result in grain yield losses as high as 50 percent. Corn silage yields may be 50 to 90% of yield losses as high as 50 percent. Drought-stressed corn is harvested before black layer or physiological maturity is reached, thereby reducing the amount of water needed to fully mature the crop. Depending on soil type and available water, harvesting irrigated corn for silage can reduce the number of irrigations needed by one to two compared to corn harvested for grain.

green, barren stalks will typically be much wetter than they appear in the field containing upwards of 75 to 90% moisture because there is no grain to dry down the moisture contained in the stalks. It is recommended to sample plants and conduct dry matter tests at a laboratory, with a microwave or Koster® Moisture Tester. The tendency is to harvest drought-stressed corn too early and too wet causing excess effluent (run-off) and the loss of nutritious sugars. Hybrid maturity, drought tolerance, and late-season plant health may influence harvest timing significantly. If conditions remain hot and dry, silage harvest may occur earlier than normal. Harvest assessment will be required on a field-by-field basis. For example, spider mite infestation, whose activity is greater under hot and dry conditions, may warrant earlier harvest. If the corn has any grain, the kernel milkline can be a general indicator to determine the proper time to chop, but the variability in droughty corn, whole-plant sampling is still the best approach.

Drought can result in the crop ranging from barren plants with no ears or starch to varying levels of starch (grain) depending upon stress at pollination and subsequent kernel abortion. It is important to realize that starch deposition is the primary driver of lowering the moisture in the chopped plant. The stover is often much wetter than expected in droughted corn because ear development is lacking. In these situations, energy will be partitioned more into sugar and fiber in the stalk and leaves rather than to grain. Studies conducted by Michigan State University indicate that severely stressed corn (short plants with essentially no ears) still had a feeding value of approximately 70% of normal corn silage due to the highly digestible fiber and sugar content. Due to the potential variability, it is important to analyze droughty corn silage for dry matter, NDF (neutral detergent fiber), NDF digestibility, sugar, starch and nitrates (see FEED section). Consider segregating storage based on fields that may have relatively higher feed value.

FROSTED CORN

Corn plants that have been frosted prior to harvest can experience premature leaf or whole-plant death. The plant may remobilize stored carbohydrates from the leaves or stalk tissue (leading to standability issues) to the developing ears, but yield and nutritional potential will still be lost mostly from the cessation of starch deposition. Approximately yield losses due to premature death of leaves (but not stalks) range from 36, 31, and 7% when the leaf death occurs at R4 (dough), R5 (early dent), and half-milkline (R6.5) stages of kernel development.

Loss of nutrient value from leaf loss or undesirable microbial/fungal growth can be minimized if the crop is harvested as soon as possible after the frost. Post-frosted corn is predisposed to spoilage organisms with the onset of warm days and cool nights, coupled with high humidity from rainy/dry conditions. Fortunately, husks tend to open up and dry down rapidly, following a frost which mitigates the ear condensation although stalks will retain considerable moisture. Fungi growth often attributes to conditions set up by a frost, were many times already active in the field prior to the frost event. Corn that has experienced a killing frost at 1/3 to ½ milk line maturity will typically be below 72% moisture and can be harvested soon after the event. Corn that is pre-dough stage will be too wet (>75% moisture) to harvest and may require several days in the field to dry to acceptable harvest moisture (to prevent excess effluent). If the frost event did not freeze kernels and only damaged the top of the plant leaving leaves around the ear still healthy, the plant will continue to mature and lay down starch in the kernel.

Leaves of immature frosted plants make the crop appear very dry but most of the moisture is in the stalk further compounded by lack of starch which also serves to dry down the plant. If harvest must proceed, it is possible (but inconvenient) to add dry materials (e.g. dry corn, beet pulp etc.) to the silage to increase the dry matter. For example, one bushel of dry corn per ton of immature silage will increase the silage dry matter by 1.5% units. Immature corn that has experienced a killing frost will have high sugar content in the stalk from sugars that will not be translocated to the kernel. This helps to improve the crops nutritive value to offset reduced starch levels. However, these excess sugars will also provide nutrients for spoilage organisms to grow during feed out. These high sugar corn plants will also have a natural population of fermenting bacteria (epiphytes) that will be greatly reduced by the frost event. For these reasons, a combination L. buchneri inoculant is highly recommended. A “combination” product means that the inoculant contains both homfermentative strains to quickly reduce pH along with a L. buchneri strain to inhibit yeast growth at feed out.
Research at the W.H. Miner Institute investigated the impact of frost and subsequent mold/fungal growth on NDF digestibility. They used corn that experienced a hard frost which killed much of the top third of the plant. The crop remained in the field for another week until it dried down enough to harvest and during that time, experienced significant mold/fungal growth on the damaged portion. Frost and resulting fungal deterioration of corn leaves resulted in a 6% unit drop in NDF digestibility (30-hour) and 5% unit increase in uNDFom30 compared to the lower, healthy green leaves. Frost and subsequent mold/fungal growth not only reduced the energetic value of the crop but also decreased intake potential by the increased uNDF.

The researchers concluded that NDFD and uNDF is influenced by more than just hybrid selection or crop maturity at harvest, but also by any anti-nutritional factors such as the quality of growing season, presence of weeds and pest or fungal damage.

The term “high-moisture corn” (HMC) can technically be applied to any corn harvested above traditional combining moistures and then allowed to ferment in the storage structure. It can range from as low as 22-24% kernel moisture recommended in sealed, upright storage structures to as high as 30-36% kernel moisture for bunker stored snaplage. High-moisture corn can be harvested with a combine (high-moisture shelled corn), with a corn picker or combine (high-moisture ear corn or earlage) or as snaplage (ear and husk harvested with a forage chopper retrofitted with a snapper corn head). There has been increased interest in snaplage due to the cost savings compared to harvesting with a combine and having to process kernels (e.g. tub-grind) at the storage structure. Recent studies have also confirmed that if harvested at the proper kernel moisture, snaplage can have extremely high feeding value if processed and stored correctly.

To capture the most starch per acre, high-moisture corn harvest should not begin until the kernels have reached black layer and are physiologically mature. For most hybrids, kernels will be between 34-36% moisture at black layer. It is preferred to reference kernel moisture when making earlage (HMEC) or snaplage harvest recommendations because most growers own a kernel moisture tester and the final product may have varying amounts of cob or husks which impact moisture levels. The cob carries more moisture than the kernel with the traditional thumb-rule that the final mix of earlage or snaplage will be about 3-4% units wetter than the kernel (based on ears in modern genetics being about 10% cob). Targeting kernel moisture levels of 28% or greater generally results in a product that seems to work best in terms of both storage fermentation and ruminal starch digestibility. Nutritionists will need to be cognizant that ruminal starch digestibility or snaplage harvest recommendations because most growers own a kernel moisture tester and the final product may have varying amounts of cob or husks which impact moisture levels. The cob carries more moisture than the kernel with the traditional thumb-rule that the final mix of earlage or snaplage will be about 3-4% units wetter than the kernel (based on ears in modern genetics being about 10% cob). Targeting kernel moisture levels of 28% or greater generally results in a product that seems to work best in terms of both storage fermentation and ruminal starch digestibility. Nutritionists will need to be cognizant that ruminal starch digestibility is influenced by more than just hybrid selection or crop maturity at harvest, but also by any anti-nutritional factors such as the quality of growing season, presence of weeds and pest or fungal damage.

ADVANTAGES OF HIGH-MOISTURE CORN INCLUDE:

1. Earlier harvest that fits well between corn silage and dry grain.
2. Increased yields of 9-12% per acre if also harvesting the cob.
3. Potential cost savings compared to harvesting dry corn and processing at the storage structure.
4. Higher ruminal starch availability compared to dry corn.
5. Additional source of digestible fiber if cobs and husk are harvested in a timely manner.

DISADVANTAGES OF HIGH-MOISTURE CORN ARE:

1. Fermentation and feedout losses.
2. Potential for the corn crop to get overly-dry reducing digestibility and palatability.
3. Higher inventory carrying cost.
4. More inconsistent than dry grain because of changing starch digestibility over time in storage. If the corn crop gets too dry (e.g. kernel moisture <25%), problems start to mount in terms of reduced cob digestibility in earlage and snaplage, fermentation issues and potential instability in the feed bunk.

The HIGH-MOISTURE CORN moisture, snaplage can have extremely high feeding value if processed and stored correctly.

To capture the most starch per acre, high-moisture corn harvest should not begin until the kernels have reached black layer and are physiologically mature. For most hybrids, kernels will be between 34-36% moisture at black layer. It is preferred to reference kernel moisture when making earlage (HMEC) or snaplage harvest recommendations because most growers own a kernel moisture tester and the final product may have varying amounts of cob or husks which impact moisture levels. The cob carries more moisture than the kernel with the traditional thumb-rule that the final mix of earlage or snaplage will be about 3-4% units wetter than the kernel (based on ears in modern genetics being about 10% cob). Targeting kernel moisture levels of 28% or greater generally results in a product that seems to work best in terms of both storage fermentation and ruminal starch digestibility. Nutritionists will need to be cognizant that ruminal starch digestibility is influenced by more than just hybrid selection or crop maturity at harvest, but also by any anti-nutritional factors such as the quality of growing season, presence of weeds and pest or fungal damage.

The HIGH-MOISTURE CORN moisture, snaplage can have extremely high feeding value if processed and stored correctly.

To capture the most starch per acre, high-moisture corn harvest should not begin until the kernels have reached black layer and are physiologically mature. For most hybrids, kernels will be between 34-36% moisture at black layer. It is preferred to reference kernel moisture when making earlage (HMEC) or snaplage harvest recommendations because most growers own a kernel moisture tester and the final product may have varying amounts of cob or husks which impact moisture levels. The cob carries more moisture than the kernel with the traditional thumb-rule that the final mix of earlage or snaplage will be about 3-4% units wetter than the kernel (based on ears in modern genetics being about 10% cob). Targeting kernel moisture levels of 28% or greater generally results in a product that seems to work best in terms of both storage fermentation and ruminal starch digestibility. Nutritionists will need to be cognizant that ruminal starch digestibility is influenced by more than just hybrid selection or crop maturity at harvest, but also by any anti-nutritional factors such as the quality of growing season, presence of weeds and pest or fungal damage.

The HIGH-MOISTURE CORN moisture, snaplage can have extremely high feeding value if processed and stored correctly.

To capture the most starch per acre, high-moisture corn harvest should not begin until the kernels have reached black layer and are physiologically mature. For most hybrids, kernels will be between 34-36% moisture at black layer. It is preferred to reference kernel moisture when making earlage (HMEC) or snaplage harvest recommendations because most growers own a kernel moisture tester and the final product may have varying amounts of cob or husks which impact moisture levels. The cob carries more moisture than the kernel with the traditional thumb-rule that the final mix of earlage or snaplage will be about 3-4% units wetter than the kernel (based on ears in modern genetics being about 10% cob). Targeting kernel moisture levels of 28% or greater generally results in a product that seems to work best in terms of both storage fermentation and ruminal starch digestibility. Nutritionists will need to be cognizant that ruminal starch digestibility is influenced by more than just hybrid selection or crop maturity at harvest, but also by any anti-nutritional factors such as the quality of growing season, presence of weeds and pest or fungal damage.
in HMC (>28% kernel moisture) will increase over time in fermented storage due to solubilization of the zein proteins surrounding the kernel starch granules. This is especially important to consider if transitioning cows from drier HMC to a product with higher kernel moisture. This also occurs in corn silage but that plateaus after about 6 months because kernels in corn silage are less mature than kernels in HMC. Typically about 70% of the starch will be ruminally degraded in wetter HMC and this will increase by about 2% units per month, stabilizing after about 12 months of storage. HMC ensiled at <24% moisture will typically not increase in starch digestibility due to the ensiling process.

VALUE OF COB AND HUSK

Earlage and snaplage energy values can vary from one operation to another due to differences in the amount of cob and husks contained in the feed. Wetter, greener hybrids usually do not harvest quite as cleanly and tend to have higher husk content which can dilute the feed and lower the energy content. Pioneer conducted a snaplage field study to evaluate the yield and nutritional content of four hybrids harvested at four different maturities. It demonstrated that cob digestibility declined by nearly 20% from over the harvest window. Husk and shank also declined somewhat with increasing ear maturity, but remained relatively high across all harvest periods. Maintaining cob digestibility is yet another reason for targeting earlage or snaplage harvest at kernel moisture exceeding 28 percent (or ideally very soon after kernels reach black layer). Snaplage is not a particularly attractive product when viewed the first time due to the presence of “stringy” husks. It is definitely more difficult to get husks in snaplage chopped as fine in corn silage primarily because only ears are feeding into the chopper. There is space between the ears and they are not held tightly against a crop mat or the shear bar. There is also no way to control which direction the ears enter the cutter head. Obtaining desired chop length is easier with silage due to the thicker crop mat and nearly all of the ears feeding into the chopper. There is no way to help cut the feed going through the chopper, or

KERNEL DAMAGE

Nutritionists have learned to pay close attention to the particle size of kernels in corn silage or in dry, ground corn (corn meal). The same attention needs to be paid to particle size of high moisture corn. Typical kernel particle size goals with HMC are 800-1200 microns, with a small standard deviation desirable to prevent either excessive fines or excessive large particles. It is equally important that grain particle size be monitored in earlage/snaplage. Pioneer has developed an earlage or snaplage kernel screening method available upon request at several commercial labs which evaluates just the kernel particle size and eliminates the confounding effect of cob/husks on the final grain particle size value. To maximize kernel shearing/damage with snaplage, it is advised to set the chop length as short as possible to slow the feed rolls down,

RFV VERSUS RFQ

Relative feed value (RFV) was developed over 30 years ago as a marketing tool to help standardize quality in the buying and selling of hay. It is based on voluntary animal intake of forage digestible dry matter with a value of 100 being equal to the feeding value of full-bloom alfalfa hay. Relative forage quality (RFQ) was developed to factor in the differences in fiber digestibility. Calculating RFQ requires a laboratory analysis for NDF digestibility (NDFD). NDFD tends to be higher in alfalfa grown in environments with cooler temperatures (especially at night). First-cutting usually exhibits the highest NDFD compared to second cuttings grown under higher heat units (See GROW section). These two systems track quite closely for first-cutting alfalfas but tend to diverge for later harvests. Many producers measure RFV on first-cutting using a PEAK Stick (Predictive Equations for Alfalfa Quality) and then schedule subsequent harvests based on day intervals between cuttings (e.g. 26-30 days depending upon desired quality).

Research at the University of Wisconsin shows that PEAK can also be used to estimate RFQ of first-cutting alfalfas and that RFQ tends to be as high (or higher) than RFV estimates. However, harvest loss and heat damage during storage will have a greater impact on RFQ than RFV.
Relative Feed Value (RFV)

$$RFV = \frac{120}{NDF} + \frac{(NDFD - 45) \times 0.374}{1350 \times 100}$$

Relative Forage Quality (RFQ)

$$RFQ = \frac{DMI \times TDN \times RFQ}{NDF \times NDF}$$

Acronym Key:
- DDM = Digestibility Dry Matter
- DMI = Dry Matter Intake
- ADF = Acid Detergent Fiber (% of DM)
- CP = Crude Protein (% of DM)
- FA = Fatty Acids (% of DM) = Ether Extract
- NDF = Neutral Detergent Fiber (% of DM)
- NFC = Non-Fibrous Carbohydrate (% of DM)
- NDFD = Nitrogen Free NDF = NDF - NDFCP, or Estimated as NDF * 0.93
- NDFn = Nitrogen Free NDF (% of DM)
- NFC = Non-Fibrous Carbohydrate (% of DM)
- NDF = Neutral Detergent Fiber (% of DM)
- DMI = Dry Matter Intake
- RFV = Relative Feed Value
- RFQ = Relative Forage Quality
- RFV = Relative Feed Value
- RFQ = Relative Forage Quality

HARVEST MATURITY

Plant maturity at harvest is the biggest driver of alfalfa yield and nutritional quality. Unfortunately, they are inversely related. If the plant is allowed to mature to the flower stage, yield is increased, but quality in terms of leaf-to-stem ratio (influencing protein levels) and digestion of the plant NDF is reduced. The recent commercialization of transgenic reduced-lignin alfalfa will help reduce the negative relationship between yield and RFQ.

Field studies show that average daily increase in alfalfa yield across all but late-fall cuttings averages about 100 lbs per acre. However, yield change per day around harvest time varies considerably ranging from 0 to 200 lbs per acre per day. Yields are less in cool, cloudy weather, and in the presence of insects, disease or drought. Yield is greater with adequate moisture, high solar radiation and 75 to 85°F degree weather. Data from the Midwest shows that three harvests taken at 10% bloom will yield about 15 to 20% more than four harvests taken at the bud stage.

University of Wisconsin research shows that fiber content and digestibility of first-cutting changes at a faster rate than later cuttings. First-cutting decreases about five RFV points per day, second-cutting decreases two to three points per day and third and fourth cuttings decline one to two points per day. It appears late-fall growth changes little in forage quality during mid-to-late September and early October. RFQ will change about the same as RFV on first-cutting and then decline about 4-5 points per day on 2nd, 3rd and 4th cuttings. Factors such as drought and potato leafhopper will dramatically reduce yield but increase forage quality due to a higher leaf-to-stem ratio. The introduction of transgenic reduced-lignin alfalfa varieties will dramatically change the traditional view of harvest management and many of the harvest maturity decision aids (PEAQ Stick, GDU targets) will have to be modified when dealing with reduced-lignin varieties. Alfalfa varieties with reduced-lignin technology have the same lignin and NDFD as conventional alfalfa varieties harvested 7-10 days earlier. Alfalfa with reduced-lignin offers several new management opportunities for growers. One option is to continue harvesting on a typical bud stage schedule with a resulting increase in alfalfa RFQ compared to conventional varieties. A second option is to delay harvest of each cutting by 7-10 days and eliminate one cutting during the season. Summer cutting intervals could be 35 days instead of the typical 28-day schedule. By harvesting later and eliminating a cutting, alfalfa plants may have better winter survival and stand longevity. Finally, reduced-lignin alfalfa can serve as a risk reduction tool for weather or equipment related delays by maintaining higher forage quality for a longer time.

Optimum Stand NDF in Alfalfa-Grass Mixtures

<table>
<thead>
<tr>
<th>Cutting</th>
<th>Yield (lb/day)</th>
<th>RFV per day</th>
<th>RFQ per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>-5</td>
<td>-5</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>-2 to -3</td>
<td>-5</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>-1</td>
<td>-4</td>
</tr>
</tbody>
</table>

Optimum Mixed Stand NDF

<table>
<thead>
<tr>
<th>NDF Of Stand Mixture</th>
<th>NDF Of Mixed Stand NDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>36</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>46</td>
<td>46</td>
</tr>
</tbody>
</table>

Alfalfa Height at Optimum Mixed NDF

<table>
<thead>
<tr>
<th>Alkaline Height, Inches</th>
<th>% Grass</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
</tr>
</tbody>
</table>

Relative Forage Quality (RFQ)

$$RFQ = DMI \times TDN \times RFQ$$

$$RFQ = DMI \times TDN \times RFQ$$

Relative Feed Value (RFV)

$$RFV = \frac{120}{NDF} + \frac{(NDFD - 45) \times 0.374}{1350 \times 100}$$

Acronym Key:
- DDM = Digestibility Dry Matter
- DMI = Dry Matter Intake
- ADF = Acid Detergent Fiber (% of DM)
- CP = Crude Protein (% of DM)
- FA = Fatty Acids (% of DM) = Ether Extract
- NDF = Neutral Detergent Fiber (% of DM)
- NFC = Non-Fibrous Carbohydrate (% of DM)
- NDFD = Nitrogen Free NDF = NDF - NDFCP, or Estimated as NDF * 0.93
- NDFn = Nitrogen Free NDF (% of DM)
- NFC = Non-Fibrous Carbohydrate (% of DM)
- NDF = Neutral Detergent Fiber (% of DM)
- DMI = Dry Matter Intake
- RFV = Relative Feed Value
- RFQ = Relative Forage Quality
- RFV = Relative Feed Value
- RFQ = Relative Forage Quality
Choice of maturity at harvest depends on the class of animal to which the crop will be fed, the need for quantity versus quality and agronomic considerations for the alfalfa stand such as the need to replenish carbohydrate root reserves or earlier harvest in response to leafhopper infestation. As previously noted, the introduction of transgenic reduced-lignin alfalfa varieties will dramatically change the traditional view of harvest management and many of the harvest maturity decision aids (PEAQ Stick, GDU targets) will have to be modified when evaluating reduced-lignin varieties. It is important to set harvest goals and hope for cooperative weather. Dairy producers generally prefer alfalfa for lactating cattle in the range of 160-180 RFV/RFQ. Alfalfa stands can generally be harvested more mature to capture more yield for other classes of animals. Harvest schedules need to account for a 20-point loss in RFV/RFQ from harvest through field wilting and fermentation. If 180 RFQ is desired, harvest needs to occur when plants are close to 200 RFV/RFQ. The moisture level to wilt the plant is primarily a storage structure and fermentation issue discussed in the STORE section of this manual.

Leaves have less NDF, higher NDFD than stems thus harvest losses have greater impact on RFQ than on RFV.

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>ADF (% DM)</th>
<th>NDF (% DM)</th>
<th>NDFD (% NDF)</th>
<th>RFV</th>
<th>RFQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34</td>
<td>43</td>
<td>48</td>
<td>135</td>
<td>148</td>
</tr>
<tr>
<td>2</td>
<td>34</td>
<td>43</td>
<td>58</td>
<td>135</td>
<td>174</td>
</tr>
</tbody>
</table>

Same laboratory fiber levels
High value = higher fiber digestibility
Same RFV
Clearly superior RFQ

Examples of RFV vs. RFQ in alfalfa

Expected forage quality values as alfalfa advances in maturity

<table>
<thead>
<tr>
<th>STAGE OF MATURITY</th>
<th>CRUDE PROTEIN</th>
<th>ACID DETERGENT FIBER</th>
<th>NEUTRAL DETERGENT FIBER</th>
<th>DIGESTIBLE DRY MATTER</th>
<th>RELATIVE FEED VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% OF DRY MATTER</td>
</tr>
<tr>
<td>Vegetative</td>
<td>>22</td>
<td><25</td>
<td><34</td>
<td>>69</td>
<td>>188</td>
</tr>
<tr>
<td>Bud</td>
<td>20-22</td>
<td>25-31</td>
<td>34-41</td>
<td>67</td>
<td>166</td>
</tr>
<tr>
<td>Early Bloom</td>
<td>18-19</td>
<td>32-36</td>
<td>42-46</td>
<td>62</td>
<td>131</td>
</tr>
<tr>
<td>Late Bloom</td>
<td>16-17</td>
<td>37-40</td>
<td>47-50</td>
<td>60</td>
<td>115</td>
</tr>
<tr>
<td>Seed Pod</td>
<td><16</td>
<td>>41</td>
<td>>50</td>
<td><58</td>
<td><108</td>
</tr>
</tbody>
</table>

The GDU (growing degree unit) method has been employed primarily with first-cutting and begins with identifying when plants break dormancy. While corn uses a base temperature of 50°F, alfalfa uses a base of 41°F because that is the temperature at which alfalfa begins to grow. Accumulated base 41 GDU is calculated as (Maximum Daily Temperature + Minimum Daily Temperature) / 2 - 41°F. GDUs are not counted until the high daily temperature hits 41°F for five consecutive days. Growers should develop their own GDU targets for their unique environments, however, in general 700 GDU is equivalent to bud stage (or about 38% NDF) and 880 approximates first flower. GDU is a preferable harvest predictor compared to using calendar dates. Research reported by W.H. Miner Institute showed the date at which alfalfa in the Northeast has reached 700 GDU was as early as May 4th (2012) and as late as June 5th (2014).

Field research has shown that NDF levels in the crop can increase as much as 0.04 points for each accumulated GDU. It is typical to accumulate 10-40 GDU/day which translates to 0.4 to 1.6 points of NDF per day, if it takes six days to harvest, the crop can increase by 2.4-9.6 points of NDF. The Pioneer website (www.pioneer.com) has a feature allowing growers to track local GDU that can be used to predict corn growth stages, or for staging alfalfa harvest.

Scissor cutting method

Several state extension services have partnered with local forage laboratories to evaluate the fiber levels (and also NDFD) of immature plants to help stage harvest. Alfalfa sampling begins at about 14 inches of height. To facilitate rapid turnaround of data, laboratories often employ NIRS (Near Infrared Spectroscopy) using calibrations developed specifically for immature alfalfa.
PEAQ

The predictive equation for alfalfa quality (PEAQ) is a field tool designed primarily to help determine the first harvest date by monitoring plant height and maturity. Plant height is an excellent indicator of staging harvest because RFV and RFQ decrease as the plant height increases. Research from North Dakota State University shows that the RFV of alfalfa, when growing from 20 to 40 inches in height, decreased 71 units during the late vegetative stage, 61 units during late bud stage and 53 units during the late flower stage. The PEAQ stick approach was developed using traditional alfalfa varieties so will not apply to stands of transgenic reduced lignin alfalfa which will have higher RFV/RFQ at later plant maturities.

The PEAQ stick evaluation begins by sampling four to five, 2-square-foot sections representative of the entire alfalfa field while avoiding lodged or leaning areas. Determine the growth stage (vegetative, bud or flower) of the most mature stem (may not be the tallest stem). Find the single tallest stem and hold the stem up next to the stick, noting the estimated plant RFV and NDF value closest to the tip of the stem (not the tip of the tallest leaf). This method does not work well for weedy or grassy stands, or for very short (<16") or very tall (>40") stands. PEAQ is the only staging method that works relatively well across all cuttings.

EXTENDING HARVEST WITH DIFFERENT VARIETIES

It is possible to widen the harvest window by variety selection to facilitate harvesting of extensive silage acres. The figure below shows how planting varieties selected for high quality can be used to complement high yielding varieties by entering the desired harvest window at a slightly later time.

USING VARIETY MANAGEMENT TO “WIDEN THE HARVEST WINDOW”

All varieties tend to decline in quality at about the same rate (e.g. slopes of the green and red lines). What differs is when varieties enter the box (optimal RFQ at harvest).

BEGIN CUTTING

HIGH QUALITY VARIETY

day 32

BEGIN CUTTING

HIGH YIELDING VARIETY

day 28

Opens the harvest window by 4 days. Exact number of days will vary by variety and growing conditions.

CUTTING HEIGHT

Lowering the cutter bar obviously results in higher yields of alfalfa, with the biggest effect from 1st cutting which typically accounts for 40-60% of total yearly yields. Most of the yield gain is from increased growth from stems originating from the crown rather than from axillary buds on the lower portions of the stems. Research shows that alfalfa can be cut as short as 1.5 inches and that each inch above this will result in 0.5 tons per acre reduction in annual yields. However, lower cutting reduces forage quality by lowering leaf:stem ratio resulting in about 5 points lower RFV per inch of shorter cut. Lower cutting also tends to increase the ash content from disc mowers vacuuming soil (ash) into the crop. This causes lower digestibility and the potential for increased sol-borne bacteria and clostridial spores that can also have a negative impact on fermentation. For most producers, cutting pure-alfalfa stands at 2.5-3.0 inches seems to be a good compromise. To prevent shortened stand life in mixed stands, this should be increased to 3-4 inches if the stand includes brome-grass, orchardgrass or timothy. Alfalfa doesn’t re-grow from the cut stems but rather from crown buds so cutting height has little impact on plant nutrient availability. However, grasses do not have tap roots, and they regrow from the cut stems. Nutrients for the following cuttings are stored in the bottom few inches of grasses, so cut height can impact both regrowth and stand life. Many agronomists now recommend a 4-inch stubble height for cool-season forage grasses.
The old adage is that "alfalfa doesn’t die, growers kill it." This is caused by aggressive harvest intervals not allowing the plant to adequately replenish root reserves and by punishing the stand physically with harvest or post-harvest equipment traffic. It is well known that wheel traffic soil compaction can reduce soil air permeability, water infiltration and alfalfa root development. University of Wisconsin research shows that the largest effect of wheel traffic is breaking re-growing alfalfa stems which reduce yield at the next cutting. They recommend these management practices to reduce yield loss to wheel traffic:

1. plant traffic-tolerant varieties,
2. don’t use tractors any larger than necessary,
3. limit trips across the field,
4. use wide swath to allow hay/haylage to dry faster and
5. apply manure or fertilizer (or remove dropped bales) immediately after harvest.

HARVEST TIMING

The time of day to harvest alfalfa (am vs. pm) is an interesting topic and research results fall on both sides of the debate. The basic idea is that cutting later in the day allows the crop to deposit more sugars to improve palatability and aid in silage fermentation. Much of the positive research has been conducted on alfalfa hay harvested in Western states. Although am vs. pm forages differ in initial composition, it is not clear that these differences persist after drying and/or fermentation. Despite the plants being cut, they are still alive and cellular respiration will reduce sugar levels at night and in the section of the window not receiving sunlight. Research in Wisconsin showed 11 of 14 alfalfa samples had higher sugars with pm-cut alfalfa; yet only one of the 14 had higher sugar levels in the stored forage.

Midwestern research suggests that when the length of the regrowth period following harvest is more than 45 to 50 days, another harvest can be taken without much agronomic risk. Research from Quebec, Canada suggests that harvesting late-fall alfalfa after a killing frost is a viable approach to increasing forage inventory without affecting winter survival or the following spring yields. The University of Wisconsin has traditionally suggested a "no-cut window" from September 1st until a killing frost (below 24ºF or <26ºF for 6-8 hours). This allows the plant adequate time to deposit carbohydrate root reserves to support the winter and meet growth demands the following spring.

Midwestern research suggests that harvesting late-fall alfalfa after a killing frost is a viable approach to increasing forage inventory without affecting winter survival or the following spring yields. The University of Wisconsin has traditionally suggested a "no-cut window" from September 1st until a killing frost (below 24ºF or <26ºF for 6-8 hours). This allows the plant adequate time to deposit carbohydrate root reserves to support the winter and meet growth demands the following spring.

Midwestern research suggests that harvesting late-fall alfalfa after a killing frost is a viable approach to increasing forage inventory without affecting winter survival or the following spring yields. The University of Wisconsin has traditionally suggested a "no-cut window" from September 1st until a killing frost (below 24ºF or <26ºF for 6-8 hours). This allows the plant adequate time to deposit carbohydrate root reserves to support the winter and meet growth demands the following spring.

Midwestern research suggests that harvesting late-fall alfalfa after a killing frost is a viable approach to increasing forage inventory without affecting winter survival or the following spring yields. The University of Wisconsin has traditionally suggested a "no-cut window" from September 1st until a killing frost (below 24ºF or <26ºF for 6-8 hours). This allows the plant adequate time to deposit carbohydrate root reserves to support the winter and meet growth demands the following spring.

Midwestern research suggests that harvesting late-fall alfalfa after a killing frost is a viable approach to increasing forage inventory without affecting winter survival or the following spring yields. The University of Wisconsin has traditionally suggested a "no-cut window" from September 1st until a killing frost (below 24ºF or <26ºF for 6-8 hours). This allows the plant adequate time to deposit carbohydrate root reserves to support the winter and meet growth demands the following spring.

Midwestern research suggests that harvesting late-fall alfalfa after a killing frost is a viable approach to increasing forage inventory without affecting winter survival or the following spring yields. The University of Wisconsin has traditionally suggested a "no-cut window" from September 1st until a killing frost (below 24ºF or <26ºF for 6-8 hours). This allows the plant adequate time to deposit carbohydrate root reserves to support the winter and meet growth demands the following spring.

Midwestern research suggests that harvesting late-fall alfalfa after a killing frost is a viable approach to increasing forage inventory without affecting winter survival or the following spring yields. The University of Wisconsin has traditionally suggested a "no-cut window" from September 1st until a killing frost (below 24ºF or <26ºF for 6-8 hours). This allows the plant adequate time to deposit carbohydrate root reserves to support the winter and meet growth demands the following spring.

Midwestern research suggests that harvesting late-fall alfalfa after a killing frost is a viable approach to increasing forage inventory without affecting winter survival or the following spring yields. The University of Wisconsin has traditionally suggested a "no-cut window" from September 1st until a killing frost (below 24ºF or <26ºF for 6-8 hours). This allows the plant adequate time to deposit carbohydrate root reserves to support the winter and meet growth demands the following spring.

Midwestern research suggests that harvesting late-fall alfalfa after a killing frost is a viable approach to increasing forage inventory without affecting winter survival or the following spring yields. The University of Wisconsin has traditionally suggested a "no-cut window" from September 1st until a killing frost (below 24ºF or <26ºF for 6-8 hours). This allows the plant adequate time to deposit carbohydrate root reserves to support the winter and meet growth demands the following spring.

Midwestern research suggests that harvesting late-fall alfalfa after a killing frost is a viable approach to increasing forage inventory without affecting winter survival or the following spring yields. The University of Wisconsin has traditionally suggested a "no-cut window" from September 1st until a killing frost (below 24ºF or <26ºF for 6-8 hours). This allows the plant adequate time to deposit carbohydrate root reserves to support the winter and meet growth demands the following spring.

Midwestern research suggests that harvesting late-fall alfalfa after a killing frost is a viable approach to increasing forage inventory without affecting winter survival or the following spring yields. The University of Wisconsin has traditionally suggested a "no-cut window" from September 1st until a killing frost (below 24ºF or <26ºF for 6-8 hours). This allows the plant adequate time to deposit carbohydrate root reserves to support the winter and meet growth demands the following spring.

Midwestern research suggests that harvesting late-fall alfalfa after a killing frost is a viable approach to increasing forage inventory without affecting winter survival or the following spring yields. The University of Wisconsin has traditionally suggested a "no-cut window" from September 1st until a killing frost (below 24ºF or <26ºF for 6-8 hours). This allows the plant adequate time to deposit carbohydrate root reserves to support the winter and meet growth demands the following spring.
BIOLOGY OF ALFALFA WILTING/DRYING

The primary factors that speed alfalfa wilting and drying are swath exposure to sunlight, swath temperature, air temperature, crop moisture and wind velocity. Factors which slow drying are relative humidity, swath density and soil moisture.

In an attempt to reduce weather-related harvest risk, many growers are successfully mowing alfalfa (sometimes with conditioners removed to not damage stomata) into wide swaths for faster drying, followed by merging and chopping within a 24-hour period. Not only does this reduce weather risk (e.g. rain damage leaching sugars and extending respiration losses), but preserves quality by retaining more sugars and decreases the risk of contamination by undesirable organisms such as soil-borne clostridia.

The figure below details the phases of alfalfa wilting and drying. Research from Cornell University Extension indicated that wide-swatching conditioning was of limited benefit because it interfered with moisture loss from leaf stomata. Wisconsin researchers cite research showing conditioning with wide swathes produces the shortest time to acceptable harvest moisture and that unconditioned windrows needed to be nearly twice as wide as the conditioned windrows to produce a drying advantage. Some of this debate about conditioning centers around recommended silage harvest moisture. Producers today are targeting much dryer alfalfa silage than the 65-70% moisture that was once the norm. It appears that if producers are wide-swatching, conditioning is not as important to get down to 65+ percent moisture. However, if equipment limitations prevent adequately wide-swatching, conditioning is still recommended, especially for those wanting to ensile alfalfa in the moisture range of 55-60% to reduce clostridia (butyric acid) fermentations.

USING VARIETY MANAGEMENT TO “WIDEN THE HARVEST WINDOW”

Axial moisture movement through stem to leaves and out through stomata account for most of the moisture loss to get to higher-end ensiling moistures (70%). Conditioning the crop can inhibit this initial phase.

This slower intermediate drying stage involves radial moisture movement from the center of the stem to the outer edge. This is where conditioning plays a critical role in helping dry the crop.

The final drying stage is influenced by osmotic and cell forces influenced primarily by environmental drying conditions and soil moisture.

Source: Adapted from Kilcer, 2006
FERMENTATION PROCESS

Silage fermentation can be simplified into three phases. Silages experience aerobic (with oxygen) conditions during harvest, followed by anaerobic (without oxygen) conditions which initiate lactic acid bacterial (LAB) growth, and finally, back to aerobic conditions during feedout.

The natural microbial (epiphytic) populations that exist on the fresh crop at harvest exert a tremendous influence on the stability and feeding value of the resulting ensiled feed. Factors such as temperature, humidity, solar radiation, plant maturity, moisture, length of wilting period, and soil contamination during harvest all influence the type and quantity (colony forming units or cfu/gram of forage) of epiphytes populating the crop.

The ultimate goal of ensiling is to stabilize the crop via the action of LABs. This reduces pH through the efficient conversion of sugars to lactic acid. As livestock operations transitioned to larger bunkers and drive-over piles, it created a greater need to reduce aerobic deterioration on the face of the silage during feedout.

Total epiphyte counts can vary from near zero to several million cfu/gram of fresh crop. The microflora on fresh plants are primarily gram-negative, aerobic (oxygen-loving) species. The preferred gram-positive, facultative anaerobic LAB that drives the fermentation process is very much in the minority. Furthermore, not all of the small population of LAB is desirable because many are leuconostic species which are inefficient at converting sugars, lack acid-tolerance and can’t reduce pH below about 5.0. It should be noted that research on several fungicide products are in progress. Estimates are that 70 to 90 percent of all mycotoxins are already on the plant prior to harvest, and no silage additive or inoculant is capable of degrading these preformed toxins. However, producers can exert management influence over storage fungi like Penicillium (toxin-producer), and non-toxin producers such as Mucor and Monilia mold species. These molds do not typically infect the crop prior to harvest, but their soil-borne spores can contaminate the fresh forage during harvest. Ensuring proper harvest moisture, silage compaction and feedout methods can help reduce aerobic conditions conducive to the growth of these storage molds.

Clostridia are well-known for their ability to degrade proteins and produce butyric acid. Reducing soil contamination levels (ash) in legumes and grasses in addition to ensiling at higher dry matters such as 40-50%, reduces the chances of clostridia problems. Clostridia take a month or two to grow and establish populations, so if forced to ensile wet silages, it is best to feed them immediately before they initiate their destructive process. Producers are trending towards higher dry matter legume/grass silages from having learned this lesson the hard way.

Researchers at the U.S. Dairy Forage Research Center showed that epiphyte counts were elevated with warmer temperatures, longer wilting times and if rainfall occurred during wilting of legume forage. While wide-swatthing aids in rapid wilting of legume/grass forages, the greater exposure to solar radiation can have a negative effect on LAB counts. Finally, the process of harvesting tends to quickly raise LAB counts presumably because of the availability of nutrient-rich plant juices. Moisture of the crop at harvest also dictates which epiphytes dominate, exemplified by clostridia preferring a high-moisture environment. You can easily observe the influence of harvest moisture on which silage microflora dominate by looking at their metabolism end-products (volatile fatty acids and ammonia-N) across different moisture ranges. In general, wetter silages undergo a more extensive fermentation; have a slightly higher pH, more ammonia-N and typically higher acetic acid levels (primarily from higher yeast and heterofermentative bacterial growth). Drier silages undergo less extensive fermentation, have a slightly higher pH, less ammonia-N and typically lower acetic and butyric acid. Silage management is critical with drier silage to minimize porosity and exposing store silage to oxygen infusion given the lack of water to fill in the air spaces.

The lower ammonia-N (soluble protein) in drier silages should be factored into diets to be sure that rumen bacteria have adequate nitrogen that used to be provided from the higher soluble protein found in wetter legume/grass silages. The benefit of inoculation is overwhelming epiphytes with highly competitive LAB strains which dominate and direct the fermentation process to a more consistent endpoint, despite differences in harvest moisture.

Dry matter loss (shrink) begins with continued plant cell respiration and growth of aerobic microflora which utilize carbohydrate sources (primarily sugars) producing water, heat and carbon dioxide (CO₂). It is the carbon in CO₂ that is lost to the atmosphere.

SOURCES OF LOST CO₂ CONTRIBUTING SILAGE TO DRY MATTER (SHRINK) LOSS

<table>
<thead>
<tr>
<th>SUBSTRATE</th>
<th>END-PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homolfermentative pathways</td>
<td></td>
</tr>
<tr>
<td>C₆H₁₂O₆ (glu,fru)</td>
<td>→ 2 C₃H₆O₃ (lactic acid)</td>
</tr>
<tr>
<td>Heterofermentative pathways</td>
<td></td>
</tr>
<tr>
<td>C₉H₁₂O₆</td>
<td>2 C₃H₆O₃</td>
</tr>
<tr>
<td>Aerobic organisms active until oxygen is depleted</td>
<td>CO₂</td>
</tr>
<tr>
<td>CO₂</td>
<td>Heat</td>
</tr>
<tr>
<td>3 C₆H₁₂O₆</td>
<td>C₃H₆O₃ + C₂H₄O₂</td>
</tr>
</tbody>
</table>

SUBSTRATE END-PRODUCTS

<table>
<thead>
<tr>
<th>SUBSTRATE END-PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homofermentative pathways</td>
</tr>
<tr>
<td>C₆H₁₂O₆ (glu,fru)</td>
</tr>
<tr>
<td>Heterofermentative pathways</td>
</tr>
<tr>
<td>C₉H₁₂O₆</td>
</tr>
<tr>
<td>Aerobic organisms active until oxygen is depleted</td>
</tr>
<tr>
<td>CO₂</td>
</tr>
<tr>
<td>3 C₆H₁₂O₆</td>
</tr>
</tbody>
</table>

SOURCES OF LOST CO₂ CONTRIBUTING SILAGE TO DRY MATTER (SHRINK) LOSS

<table>
<thead>
<tr>
<th>SOURCES OF LOST CO₂ CONTRIBUTING SILAGE TO DRY MATTER (SHRINK) LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continued plant respiration</td>
</tr>
<tr>
<td>CO₂ losses from:</td>
</tr>
<tr>
<td>1. Aerobic organisms active until oxygen is depleted</td>
</tr>
<tr>
<td>C₆H₁₂O₆ (glu,fru)</td>
</tr>
<tr>
<td>2. Heterofermentative anaerobic bacteria found naturally on crops</td>
</tr>
<tr>
<td>C₉H₁₂O₆</td>
</tr>
<tr>
<td>3. Aerobic organisms that again become metabolically active when exposed to air at feedout</td>
</tr>
<tr>
<td>3 C₆H₁₂O₆</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOURCES OF LOST CO₂ CONTRIBUTING SILAGE TO DRY MATTER (SHRINK) LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continued plant respiration</td>
</tr>
<tr>
<td>CO₂ losses from:</td>
</tr>
<tr>
<td>1. Aerobic organisms active until oxygen is depleted</td>
</tr>
<tr>
<td>C₆H₁₂O₆ (glu,fru)</td>
</tr>
<tr>
<td>2. Heterofermentative pathways</td>
</tr>
<tr>
<td>C₉H₁₂O₆</td>
</tr>
<tr>
<td>3. Aerobic organisms that again become metabolically active when exposed to air at feedout</td>
</tr>
<tr>
<td>3 C₆H₁₂O₆</td>
</tr>
</tbody>
</table>

SOURCES OF LOST CO₂ CONTRIBUTING SILAGE TO DRY MATTER (SHRINK) LOSS

<table>
<thead>
<tr>
<th>SOURCES OF LOST CO₂ CONTRIBUTING SILAGE TO DRY MATTER (SHRINK) LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continued plant respiration</td>
</tr>
<tr>
<td>CO₂ losses from:</td>
</tr>
<tr>
<td>1. Aerobic organisms active until oxygen is depleted</td>
</tr>
<tr>
<td>C₆H₁₂O₆ (glu,fru)</td>
</tr>
<tr>
<td>2. Heterofermentative pathways</td>
</tr>
<tr>
<td>C₉H₁₂O₆</td>
</tr>
<tr>
<td>3. Aerobic organisms that again become metabolically active when exposed to air at feedout</td>
</tr>
<tr>
<td>3 C₆H₁₂O₆</td>
</tr>
</tbody>
</table>

SOURCES OF LOST CO₂ CONTRIBUTING SILAGE TO DRY MATTER (SHRINK) LOSS

<table>
<thead>
<tr>
<th>SOURCES OF LOST CO₂ CONTRIBUTING SILAGE TO DRY MATTER (SHRINK) LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continued plant respiration</td>
</tr>
<tr>
<td>CO₂ losses from:</td>
</tr>
<tr>
<td>1. Aerobic organisms active until oxygen is depleted</td>
</tr>
<tr>
<td>C₆H₁₂O₆ (glu,fru)</td>
</tr>
<tr>
<td>2. Heterofermentative pathways</td>
</tr>
<tr>
<td>C₉H₁₂O₆</td>
</tr>
<tr>
<td>3. Aerobic organisms that again become metabolically active when exposed to air at feedout</td>
</tr>
<tr>
<td>3 C₆H₁₂O₆</td>
</tr>
</tbody>
</table>
which is the cause of shrink (DM) loss in silage. Wiling time and speed of harvest impact the extent of these aerobic field losses. These processes will continue until the oxygen in the silage mass is depleted. Plant moisture and compaction play a role in reducing the length of this aerobic phase in the storage structure by reducing silage porosity.

The subsequent anaerobic phase establishes an environment suitable for domination by facultative homofermentative and heterofermentative lactic acid bacteria (LAB). There would be no shrink loss in this phase if only homofermentative LAB were active because they do not produce any CO₂ (see graphic). However, less than 0.5% of epiphytic organisms naturally found on fresh crops are LAB and only a small proportion of these are homofermentative. To put the loss from heterofermentative LAB in perspective, there is a 24% loss of dry matter from the heterofermentative fermentation of glucose because of the CO₂ production lost to the atmosphere. These anaerobic fermentation losses can be reduced by 25% or more with the use of homofermentative strains found in reputable silage inoculants.

The re-exposure of silage to aerobic conditions can be divided into two areas: top and side exposure with upwards of 20% of silage contained in the top three feet in most bunkers and drive-over piles, and face exposure during feedout. The combination of these two sources of shrink loss can vary significantly due to management level with estimates of greater than 20% loss in net energy (in pure starch equivalents) reported in the literature from aerobically unstable silages. The increased use of bunkers and piles with large exposed faces (as opposed to smaller face exposure in tower silos or bags) results in significantly more shrink in the aerobic, feedout phase than in the initial aerobic phase.

THE ENSILING PROCESS

When fermentation losses occur
(sugars are lost and fiber is concentrated. About 50% DM loss occurs in Phases 1-5)

- **WSC**
 - **Aerobic Conditions**
 - CO₂ + H₂O + Heat
 - **Anaerobic Conditions**
 - Acetate-tolerant bugs drop pH to ~5.0. Low pH reduces microbial activity. Lasts 24-72 hours.
 - **Anepronical Conditions**
 - Silage Acids (nearly lactoic) drop pH

When nutrient changes occur
(terminal pH achieved, proteins are degraded, starch digestion increases, fiber digestion does not change)

- **WSC** (or Lactic Acid)
 - **Aerobic Conditions**
 - CO₂ + H₂O + Heat
 - **Anaerobic Conditions**
 - Acetate-tolerant bugs drop pH to ~5.0. Low pH reduces microbial activity. Lasts 24-72 hours.

When aerobic spoilage losses occur
(about 50% of total DM loss occurs in phase 6 in bunkers/piles with large faces)

- **WSC** (or Lactic Acid)
 - **Aerobic Conditions**
 - CO₂ + H₂O + Heat

PHASES OF SILAGE FERMENTATION AND STORAGE

<table>
<thead>
<tr>
<th>AEROBIC PHASES</th>
<th>ANAEROBIC PHASES</th>
<th>AEROBIC PHASES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell respiration and aerobic organisms consume WSC with production of CO₂, heat and water.</td>
<td>Populations of enterobacter and heterofermentative bacteria yielding lactic acid, acetic acid and ethanol.</td>
<td>Primary homofermentative LAB phase. Efficiency depends on epiphytes levels, WSC, moisture and compaction.</td>
</tr>
<tr>
<td>Transition phase with shift to more homofermentative LABs.</td>
<td>Increases in protein solubility and starch digestibility occur during this phase.</td>
<td>Secondary aerobic decomposition upon re-exposure to oxygen. Highly influenced by feedout rates and face management.</td>
</tr>
</tbody>
</table>

Temperature change: (Post ensiling temperature generally is 15˚ higher than ambient!)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>pH Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>69˚ F</td>
<td>~5.0</td>
</tr>
<tr>
<td>90˚ F</td>
<td>~4.0</td>
</tr>
<tr>
<td>80˚ F</td>
<td>~6.0</td>
</tr>
<tr>
<td>>100˚ F (if unstable)</td>
<td>>6.0</td>
</tr>
</tbody>
</table>

Continues until all O₂ is consumed.
High carbohydrate and protein enzymatic activity.

- Acetate-tolerant bugs drop pH to ~5.0. Low pH reduces microbial activity. Lasts 24-72 hours.
- Homofermentative LABs initiate more rapid and efficient drop in pH.
- Longest phase lasting until run out of WSC or terminal pH inhibits growth.
- Stability impacted by O₂ penetration residual WSC, acid profile, microbial and fungi populations.
- Yeast, mold and aerobic bacteria activity causing 50% of total DM losses.

LAB - lactic acid bacteria
WSC - water soluble carbohydrate

LABS
- Enterobacter and Acetate-tolerant bugs.
- Populations of enterobacter and heterofermentative bacteria.
- Fiber digestion does not change.

Phases of Silage Fermentation and Storage
- Phase 1: (hours)
 - WSC*
 - Aerobic Conditions
 - Bacteria
 - CO₂ + H₂O + Heat
- Phase 2-5:
 - WSC* (or Lactic Acid)
 - Anaerobic Conditions
 - Bacteria
 - (mainly lactic) drop pH
- Phase 6:
 - WSC* (or Lactic Acid)
 - Aerobic Conditions
 - Bacteria
 - CO₂ + H₂O + Heat

Conditions
- **Phase 1**
 - Aerobic
 - 12-24 hrs
 - Temperature: 69˚ F

Conditions
- **Phase 2-5**
 - Anaerobic
 - 2-3 days
 - pH Change: ~5.0

Conditions
- **Phase 6**
 - Aerobic
 - 6.0-6.5
 - pH Change: ~6.0
A SMALL SHRINK LOSS (2.1 - 5.25%) CAN ACTUALLY BE A LARGE DRY MATTER LOSS (15%) WHEN MOISTURE FROM SUGAR OXIDATION ACCOUNTED FOR CORRECTLY

- 65% moisture forage = 65 lbs. H₂O and 35 lbs. DM
- Assume 15% DM loss
- Assume (incorrectly) that there is no moisture loss or gain

Shrink Loss (%) = 65 lbs. DM *0.15/100 lbs. as fed* 100 = 5.25%

Final Silage Moisture (%) = (65 lbs. H₂O/(100-5.25 lbs. as fed))* 100 = 68.6%

TRUE SHRINK LOSS (%)

• 65% moisture forage = 65 lbs. H₂O and 35 lbs. DM
• Assume 15% DM loss
• Correctly accounting for the fact that 60% of DM loss is retained as moisture gain during sugar oxidation

TRUE Final Silage Moisture (%) =

(65 lbs. H₂O + (0.6*5.25 original shrink))/100 lbs. as fed)* 100 = 69.6%

*Source: Dr. Brian Holmes. Biological Systems Engineering Dept. Univ. of Wisconsin – Madison. Wisconsin Custom Operators Conference 1/25/11

TRUE COST OF SILAGE DRY MATTER LOSS

Dry matter loss in silage results in the loss of the most valuable nutrients. When silages ferment, sugars and starch are what the aerobic organisms and LAB utilize, and fiber levels are actually increased (concentrated). To understand the true cost of dry matter loss, they must be replaced with a nutritionally equivalent energy source, such as corn grain. For example, even in a relatively well-managed bunker, if management changes could reduce shrink by 20% (from 15% to 12.5%), it would equate to a value of $1.26 per ton ($7.56 - $6.30) if that energy had to be replaced with $4.00/bushel corn (see chart).

Silage producers are keenly aware of the losses from top or side spoilage. However, they may need additional convincing as to the loss in feed value in what may appear to be “normal” silage. What does not work very well for quantifying DM loss is relying on truck weights into the bunker compared against TMR weights out of the bunker. There is just too much room for measurement errors, and it does not account for the biological fact that silage comes out of the storage structure higher in moisture than when it was ensiled due to aerobic microbial activity generating moisture.

However, there are several approaches that can be used to quantify the nutritional cost of DM loss. One is

SHRINK VERSUS DRY MATTER LOSS

Producers and nutritionists tend to use the terms shrink and DM loss interchangeably, however, from a calculation perspective, they are very different. Shrink loss is based on an “as fed” basis, (≡ lost weight, as fed basis/original weight, as fed basis) while DM loss is based on a “dry matter” basis (≡ lost weight, DM basis/original weight, DM basis). Measuring on-farm shrink loss can be deceiving as a small shrink loss can still result in a large dry matter loss. The difference is caused by the fact that during the oxidation of silage sugars, 60% of the original dry matter weight remains as water and water has no real nutritional value to livestock. This also helps explains why silage exits the storage structure with more moisture than when initially ensiled.

WHAT HAPPENS WHEN SUGAR IS OXIDIZED

\[\text{CO}_2 \text{ is lost to the atmosphere} \]

\[\text{C}_6 \text{H}_{12} \text{O}_6 + 6 \text{O}_2 \rightarrow 6 \text{C}_6 \text{O}_6 + 6 \text{H}_2\text{O} + \text{Energy} \]

Molar Mass:

\[\frac{180}{180} \times 100 = 60\% \text{ of original DM weight remains as water} \]

Molar mass is defined as the mass of a given substance (chemical element or chemical compound) divided by its amount of substance.

- molar mass of oxygen = 32 g mol⁻¹
- molar mass of glucose = 180 g mol⁻¹
- molar mass of water is approximately: \(M(\text{H}_2\text{O}) = 18\text{ g mol}^{-1}\)

Source: Dr. Brian Holmes. Biological Systems Engineering Dept. Univ. of Wisconsin – Madison. Wisconsin Custom Operators Conference 1/25/11
Yeast populations and the metabolites they generate shift dramatically when exposed to aerobic versus anaerobic environments. Yeasts can be categorized as fresh-crop, storage or feedout strains and are further classified as fermenters or non-fermenters. They can also be subdivided by their ability to utilize different substrates such as soluble sugar or lactic acid. The sugar-utilizers contribute to dry matter loss. Ethanol production in silage is not always beneficial. Ethanol can help solubilize zein protein in corn kernels allowing for increased starch digestibility over time and during the anaerobic conditions. The acid-utilizers comprise the majority population in the presence of oxygen at feedout. At harvest, over 90% of yeasts are sugar-utilizers, but the ensiling process provides selection pressure ensuring over 90% lactate-utilizers are dominating at feedout. High counts of lactate-consuming yeasts cause aerobic stability concerns because their metabolism of lactic acid elevates silage pH creating an environment conducive to spoilage bacteria and mold growth.

Fresh-crop yeasts are usually non-fermenters and include Cryptococcus, Rhodotorula, Sporabolomyces, and sometimes Torulopsis organisms. Heat, carbon dioxide and acetic acid are the main products produced by yeasts during aerobic conditions. Heating can affect palatability and carbon dioxide contributes to dry matter loss. Residual sugars can be utilized during storage by anaerobic, low-pH resistant, storage-type, fermenter yeasts like Saccharomyces and sometimes Torulopsis. Yeasts do not reproduce during anaerobic conditions. Although yeasts are not reproducing, they remain metabolically active producing heat, carbon dioxide, ethanol and also by-products including acetic acid, aldehydes and esters. For every alcohol that is produced, a CO₂ is generated which further contributes to dry matter loss. Ethanol production in silage is not entirely bad. Ethanol can help solubilize zein protein in corn kernels allowing for increased starch digestibility over time in storage. The fermenter yeasts which are active during feedout include lactic acid-utilizing Candida and Hansenula species. Yeast will reproduce during feedout delivering a consistent and cool silage face. Yeasts can exert a profound impact in silage at the time of feeding by initiating the decline in aerobic stability (increased heating) and subsequent feeding value. Yeasts are naturally occurring epiphytes found on corn silage, cereal silage and high-moisture grains at the time of harvest. Yeasts can also be found in grass or legume silages, particularly when harvested at lower moisture. This may explain why ensilers producing grass/legume silages at lower moisture in an attempt to avoid butyric acid (obedistria) problems can sometimes experience aerobic stability problems.

The fermenter yeasts which are active during feedout include lactic acid-utilizing Candida and Hansenula species. Yeast will reproduce during feedout delivering a consistent and cool silage face. Yeasts can exert a profound impact in silage at the time of feeding by initiating the decline in aerobic stability (increased heating) and subsequent feeding value. Yeasts are naturally occurring epiphytes found on corn silage, cereal silage and high-moisture grains at the time of harvest. Yeasts can also be found in grass or legume silages, particularly when harvested at lower moisture. This may explain why ensilers producing grass/legume silages at lower moisture in an attempt to avoid butyric acid (obedistria) problems can sometimes experience aerobic stability problems.

The fermenter yeasts which are active during feedout include lactic acid-utilizing Candida and Hansenula species. Yeast will reproduce during feedout delivering a consistent and cool silage face. Yeasts can exert a profound impact in silage at the time of feeding by initiating the decline in aerobic stability (increased heating) and subsequent feeding value. Yeasts are naturally occurring epiphytes found on corn silage, cereal silage and high-moisture grains at the time of harvest. Yeasts can also be found in grass or legume silages, particularly when harvested at lower moisture. This may explain why ensilers producing grass/legume silages at lower moisture in an attempt to avoid butyric acid (obedistria) problems can sometimes experience aerobic stability problems.

The fermenter yeasts which are active during feedout include lactic acid-utilizing Candida and Hansenula species. Yeast will reproduce during feedout delivering a consistent and cool silage face. Yeasts can exert a profound impact in silage at the time of feeding by initiating the decline in aerobic stability (increased heating) and subsequent feeding value. Yeasts are naturally occurring epiphytes found on corn silage, cereal silage and high-moisture grains at the time of harvest. Yeasts can also be found in grass or legume silages, particularly when harvested at lower moisture. This may explain why ensilers producing grass/legume silages at lower moisture in an attempt to avoid butyric acid (obedistria) problems can sometimes experience aerobic stability problems.
The increased availability of yeast counts and identification has caused some nutritionists to question if there is a relationship between high yeast silages and chronically low butterfat herds. While yeasts certainly contribute to the cascading events leading to unstable silage, it is unlikely that low butterfat test can be attributed to yeast or their metabolites, per se, unless the unsuitable silage is causing sorting and reducing effective fiber intake. A more likely culprit of fat test depression is underestimating the fiber or starch digestibility of forages contributing to reduced rumen pH promoting the synthesis of ruminal bio-hydrogenation intermediates such as trans-10, cis-12 conjugated linoleic acid.

Short-term management of yeast-challenged silages involves approaches to increase daily removal rates to deprive them of time to grow in oxygenated environments. Proper removal techniques to preserve a densely packed and clean horizontal silo face will also help minimize yeast aerobic activity. Long-term crop planning to minimize aerobic activity from yeast in silages include properly sizing storage structures to allow aggressive feedout rates, rapid harvesting at proper maturity and moisture levels, the use of silage additives containing Lactobacillus buchneri and proper compaction and sealing.

FORAGE ADDITIVES

Market research indicates that bacterial inoculants account for 65-70% of all forage additives followed by acid preservatives at 20% which are used primarily on hay and high-moisture grains.

Inoculant product development is further complicated by the fact that Pioneer microbiologists have to individually test different strain combinations in both laboratory and animal trials. This is because bacterial strains can act differently when combined with various other strains as compared to when they are tested individually.

Inoculant technology advanced in 2000 when Pioneer commercialized the first North American inoculant containing L. buchneri. This was quickly followed in 2003 with the release of the first “combi” product (11C33) containing crop-specific homoefermentative LAB strains in combination with L. buchneri to deliver rapid pH decline and significantly improved bunklife. Strains of L. buchneri prefer low pH for optimal growth and historically required 1-2 months of ensiling time to utilize preformed lactic acid (thus lowering lactic acid levels) and producing metabolites (acetic acid and 1,2 propanediol) which inhibit yeast growth. Feeding treated silages before 1-2 months of ensiling with older L. buchneri strains will present no concern, however, the bunklife may be less than expected. In 2016, Pioneer introduced “Rapid React” products containing a L. buchneri strain which confers excellent bunklife for only 7 days of fermentation.

Improving fiber digestibility has long been the ultimate goal for Pioneer microbiologists. Research clearly shows that adding certain enzymes to the TMR can improve fiber digestibility. The problem is that growing enzyme-producing bacteria in commercial fermentation tanks, purifying and stabilizing the enzymes and selling through distribution channels makes their use economically unavailable for the silage market. Products that contain traditional fermentation bacterial strains along with enzymes have never been shown to improve digestibility beyond those containing bacteria alone. This is
PIONEER® BRAND FORAGE ADDITIVES: CROP-SPECIFIC OPTIONS USING PATENTED, PROPRIETARY BACTERIAL STRAINS

Inoculants Nutril® Feed Technologies

<table>
<thead>
<tr>
<th>1174</th>
<th>1189</th>
<th>11H50</th>
<th>11C33</th>
<th>11B91</th>
<th>11622</th>
<th>11CFT</th>
<th>11AFT</th>
<th>11GFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Crop</td>
<td>HMC</td>
<td>Corn Sl.</td>
<td>L. buchneri†</td>
<td>"comb"</td>
<td>L. buchneri†</td>
<td>"comb"</td>
<td>L. buchneri†</td>
<td>"comb"</td>
</tr>
<tr>
<td></td>
<td>HMC</td>
<td>Corn Sl.</td>
<td>L. buchneri†</td>
<td>"comb"</td>
<td>L. buchneri†</td>
<td>"comb"</td>
<td>L. buchneri†</td>
<td>"comb"</td>
</tr>
<tr>
<td></td>
<td>HMC</td>
<td>Corn Sl.</td>
<td>L. buchneri†</td>
<td>"comb"</td>
<td>L. buchneri†</td>
<td>"comb"</td>
<td>L. buchneri†</td>
<td>"comb"</td>
</tr>
</tbody>
</table>

Improves fermentation and reduces dry matter loss
Improves nutrient conservation
Helps reduce heating in entire TMR
Improves fiber digestibility

Improves and reduces dry matter loss
Significantly reduces heating on bunk/bale face

*New/Rapid React™ aerobic stability† technology
† Improved aerobic stability and reduced heating is relative to untreated silage. Actual results may vary. The effect of any silage inoculant is dependent upon management at harvest, storage and feedout. Factors such as moisture, maturity, chop length and compaction will determine inoculant efficacy.

IMPORTANT: Information and ratings are based on relative comparisons with other Pioneer® brand additive technology. Information and ratings are assigned by DuPont Pioneer Forage Aditivive Research, based on average performance across area of use and under normal conditions, over a wide range of both environmental and management conditions, and may not predict future results. Product responses are variable and subject to any number of environmental and management conditions. Please use this information as only part of your product positioning decision. Refer to www.pioneer.com/products or contact a Pioneer sales representative for the latest professional and most complete listing of traits and scores for each Pioneer brand product and for product placement and management suggestions specific to your operation and local conditions.

Fermentation — Rate and extent of pH decline and the composition of fermentation acids occurring in silage. Nutrient conservation — Retaining more sugar/starch and reducing protein deposition by rapidly producing lactic acid.

Fiber digestibility — The digestibility of neutral detergent fiber (NDF) by the rumen microorganisms as a percentage of the total NDF. Burel® — Relative heat development compared to ambient temperature. Burel® consists both how quickly silage begins to heat and the amount of heat generated while remaining above ambient temperature.

Due to the high cost of purified enzymes prohibiting adequate inclusion rates.

Another technological breakthrough in improving fiber digestibility occurred in 2007 with the introduction of a Pioneer Fiber Technology (Nutrivail) from L. buchneri†. This new and unique probiotic bacterium was developed to improve fiber digestibility and provide a feed product with greater agronomic benefits than those achieved with traditional inoculants.

It should be noted that corn silage treated with 11CFT will not act the same as feeding BMR corn silage. Inoculation with 11CFT-treated silage is an efﬁcacy tool allowing for removal of some protein and energy from the diet because of faster digestion of the fiber. BMR corn silage tends to increase dry matter intake due presumably to the fragility of cell walls containing less lignin. Some producers feed BMR silage to transition and high-string cows to stimulate higher intakes and feed conventional corn silage treated with 11CFT to the lower production cows to cap dietary cost savings.

For inoculation to be effective in reducing shrink, improving bunklife and enhancing nutrient digestibility, it is essential that the bacteria be uniformly distributed in the silage mass. Lactic acid bacteria do not have flagella and do not migrate very far within the silage mass. While granular application is still available, the most common and preferred method to facilitate distribution on the crop is liquid application applied to the silage in the accelerator (blower) of the forage harvester. Furthermore, granular products are less effective in dry silages. Pioneer has done extensive application research and has made commercially available several patented AppliPro® inoculant application systems. Not only do these applicators ensure excellent distribution, they also allow for inoculants to be delivered from the applicator and stored for up to five days (or frozen for 12 months) without loss of viability should weather or equipment failure delay harvest.

VFA PROFILES

Practical interpretation of silage volatile fatty acid (VFA) proﬁles can be challenging, especially if additives containing L. buchneri were used and not recorded by the laboratory. Furthermore, many of the datasets from commercial laboratories are biased from the submission of problem samples. In general, a higher moisture crop equals longer fermentation and higher total acid load. It is not unusual for low dry matter grass silages to have total acid levels in excess of 10%. Typical North American silages treated with a homoefermentative inoculant will have a lactic-to-acetic acid ratio much greater than 2:1. As discussed earlier, the lactic- to-acetic acid levels can approach 1:1 in products containing L. buchneri which metabolize lactic acid to produce acetic acid and 1,2 propanediol.

The one VFA which should be absent from this quality silages is butyric acid produced by clostridia. Silages high in moisture and contaminated with soil (high ash) tend to have more problems with butyric acid. Butyric acid reduces palatability, feed intake and has the potential to predispose ruminants to ketosis. Recommendations are to limit daily intake of butyric acid to 50 grams.
Plant Grow Harvest Store Feed

Feed Store Harvest Grow Plant

or less for early lactation cows with levels exceeding 150 grams posing a high risk for ketosis. Ketosis risk is high at any stage of lactation when daily intake levels exceed 250 grams (see table).

PROTEIN DEGRADATION

Ammonia-nitrogen (NH₃-N) as a percent of total nitrogen can be an indicator of the length of fermentation and/or clostridial fermentation. In general, a faster fermentation results in less proteolysis. NH₃-N levels (as a % of total N) should be less than 5% in corn/cereals and less than 10% in grass/legume silages.

Heat damaged (bound or unavailable protein) in silages is monitored with acid detergent insoluble nitrogen (ADIN) as a percent of total nitrogen. Levels exceeding 12% indicate excessive heating (>130º F) in forage silages and may require adjustment to the crude protein level in the ration. Pepsin insoluble nitrogen (as a percent of total nitrogen) levels greater than 20% indicate excessive heating with high-moisture earlage, snaplage or shelled corn.
A porosity of 0.40 or lower appears to be a reasonable goal. To achieve this value, a bulk density of 44 lbs/cu ft of bulk density is needed within the acceptable dry matter range of 30-40%. Under a range of dry matter content (30-40%) for good fermentation, the range of porosity does not change very much. However ensiling forage at higher DM does increase porosity appreciably.

As bulk density (as fed) increases, porosity decreases. For a given bulk density, increasing dry matter content (decreasing moisture content) increases porosity. In the recommended 30, 480 35, 560 40, 640 45, 721 50, 801 55, 881

Forage DM

As Forage DM Goes Up

<table>
<thead>
<tr>
<th>Porosity</th>
<th>Bulk Density (lb as fed/ft³, kg as fed/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25%</td>
<td>59.9, 200 55.5, 184 51.1, 168 46.6, 152</td>
</tr>
<tr>
<td>30%</td>
<td>59.9, 200 55.5, 184 51.1, 168 46.6, 152</td>
</tr>
<tr>
<td>35%</td>
<td>59.9, 200 55.5, 184 51.1, 168 46.6, 152</td>
</tr>
<tr>
<td>40%</td>
<td>59.9, 200 55.5, 184 51.1, 168 46.6, 152</td>
</tr>
<tr>
<td>45%</td>
<td>59.9, 200 55.5, 184 51.1, 168 46.6, 152</td>
</tr>
<tr>
<td>50%</td>
<td>59.9, 200 55.5, 184 51.1, 168 46.6, 152</td>
</tr>
</tbody>
</table>

Note how tractors drive over sides of a well designed pile (1:3 slope)
MAKING A “BAG OUT OF A BUNKER”

Sealing the silage mass is an important next step. This should be done as soon as possible by covering with oxygen-barrier film and 6-8mil white plastic (to reflect sunlight and reduce condensation below the plastic). Consider putting plastic down the walls of bunkers to create “a bag out of a bunker.” Be sure the plastic is overlapped between sheets so moisture will drain off on top to the plastic and not into the silage. Plastic should be weighted down with pea gravel bags or rocks to keep the plastic tightly secured. This is especially important on the front edge to prevent air billowing into the silage. If the bunker is sloped correctly, it is advisable to have 12-24 inches of the plastic hang over the face to shed water off the exposed face during rain events.

Pack tractors with a blade rather than a bucket (like on pay loaders) do a much better job of “feathering” out the silage into the recommended 6-inch layers. Front-wheel and front wheel-assist drive tractors (with dual wheels on both rear and front) provide extra traction, stability and allow for easier packing than with pay loaders. A 3-point lift (hit) is advantageous to add weight to the back along with filling the inside dual tires with fluid and adding extra lights for night time packing. Having three hydraulic remotes to run the blade, a foot throttle, a left-hand reverseer for clutch less shifting, plenty of rear-view mirrors (properly adjusted) and a “buddy seat” to train other drivers, rounds out the wish list for the ideal pack and push tractor.

Drive-over piles are becoming increasingly popular for several reasons:
1) faster to fill and feed out,
2) better understanding of the proper shape/slope and
3) less spoilage on the tails due to the technologies of oxygen-barrier film and L. buchneri inoculants.

A good drive-over pile starts with a solid base of gravel, compacted lime, asphalt or concrete. Once a manageable pile height is set (determined by the maximum height the bucket or tele-handler can reach), the width is determined by the proper side slope. The maximum recommended side slope is 1:3 or 1 foot of rise for each 3 horizontal feet. So if the pile is 10 feet tall at the top, a 1:3 side-slope results in 30 feet of silage on each side, or a 60 foot wide pile. A 30% maximum slope is critical because if the slope is any steeper it is dangerous for pack tractor drivers, and the slilage doesn’t get adequately packed on the sides. Silage pile ends should have the same slope as the sides so the entire pile can be driven over from any direction.

MANAGING DRIVE-OVER PILES

HOW NOT TO MAKE A DRIVE-OVER PILE

- Slope too steep
- Did not drive pack tractor over all sides
- Tires holding plastic slip off or don’t really weight down the plastic
- Air being billowed into the silage mass along sides where tires slid off

BALEAGE

For many smaller producers, baleage offers more flexibility than harvesting dry hay. Baleage is best harvested between about 35-70% moisture to ensure adequate fermentation. Baleage stored at 20-30% moisture is generally less successful due to moisture limiting an acceptable fermentation.

University of Wisconsin researchers recommend using a cutter on the front of the baler to cut the hay into 4-inch lengths for greater packing density, easier use in a TMR mixer, and less feed lost when fed in a feeder. They suggest wrapping baleage within 24-hours of harvest with a minimum of 6mil, preferably 8mil, of plastic wrap. This can be accomplished by wrapping 6 times with 1mil plastic or 4 times with 1.5mil plastic. Research with 4mil of plastic showed that oxygen leaked through the plastic resulting in microbial growth and spoilage. Total plastic thickness, not the number of wraps appears to be the most important factor to resist oxygen from reaching the feed.

Wrapping is a preferred storage method but long-term storage might be aided by the use of an inoculant or acid, if adequate distribution of the products can be achieved at the baler. Slage bales should be stored on a smooth, dry surface where ripping of plastic and rodent damage can be minimized.

University of Wisconsin researchers recommend using a cutter on the front of the baler to cut the hay into 4-inch lengths for greater packing density, easier use in a TMR mixer, and less feed lost when fed in a feeder. They suggest wrapping baleage within 24-hours of harvest with a minimum of 6mil, preferably 8mil, of plastic wrap. This can be accomplished by wrapping 6 times with 1mil plastic or 4 times with 1.5mil plastic. Research with 4mil of plastic showed that oxygen leaked through the plastic resulting in microbial growth and spoilage. Total plastic thickness, not the number of wraps appears to be the most important factor to resist oxygen from reaching the feed.
Proper silage feed-out management is essential to maintain consistent and high-quality ensiled forages and high-moisture grains. Research shows that poor face management can easily double shrink losses. Besides the financial loss associated with shrink, feed quality and consistency can vary dramatically and may contribute to livestock production and health problems. As mentioned earlier, porosity is the enemy so proper moisture (to fill in the air spaces), particle size, compaction (density) and sealing methods are also the key to maintaining anaerobic conditions. It is also advisable to remove and dispose of visibly moldy feed from the sides or top of the storage structure and not to allow loose, aerated silage to pile up for extended periods of time before feeding.

Proper feedout practices are especially important during warm periods of the year because the biological activity of aerobic bacteria and yeast organisms increases twofold for every 10°F increase in temperature. Consequently, it becomes challenging to stay ahead of aerobic instability during the spring and summer. It is also common to have bunk life problems with harvested forages that have been rained on before chopping and ensiling. Rain can leach crop sugars and splash soil-borne bacteria and fungi (mold) onto the crop, effectively “seeding” the silage with spoilage organisms awaiting the chance to grow if provided the opportunity. Crops stressed by drought, insect or hail damage will generally possess elevated fungal counts dictating that proper management be followed when ensiling these stressed crops.

The first criterion for stable silage is achieving a low terminal pH producing a hostile environment to inhibit the propagation of spoilage microorganisms such as aerobic bacteria, yeast and molds. Inoculants containing L. buchneri strains have been a tremendous benefit by inhibiting the growth of yeast. A second criteria for stable silage is the maintenance of an anaerobic, or “oxygen free” environment for as much of the silage as possible.

Silages should be removed from bunker and pile faces by mechanically shaving the silage face from top to bottom or peeling the silage horizontally with a front-end loader bucket. This is preferred to lifting the bucket from the bottom to the top. Lifting creates fracture lines in the silage mass allowing oxygen to enter which promotes aerobic activity. Even when removing the desirable 6-12 inches daily from the silo face, oxygen can still penetrate several feet into the stored mass. This facilitates heat-generating aerobic activity which may not fully dissipate from the face. Use of inoculants containing L. buchneri allow for reduced feedout rates while...
FEEDOUT SAFETY

Reported incidences of silage avalanches are increasing at an alarming rate. These cause machinery damage (front-end loader windows) and worker injury or death. It is imperative to think about safety while taking forage samples from bunker/pile faces, measuring density, removing spoiled feed or simply operating buckets or facers. Several companies forbid employees to approach silage bunkers or pile faces due to the liability concern.

SILO STORAGE SAFETY REMINDERS

Be careful of pack tractors if near the storage structure during filling

Unsafe removal of top spoilage due to potential for silage avalanche

SILO GAS

Caution should be exercised when working around silages within three weeks of harvest due to the potential for lethal nitrous oxide silo gases with the aroma of bleach. When tower silos were the norm, it was a common practice to run the blower for at least 15 minutes before entering a recently filled silo. Silo gas is heavier than air and can exist around bunker, pile or bagged silages, especially near the ground where there is minimal air movement. Silo gas is common in all silages but more so in forage crops such as corn and sorghum that accumulate nitrates from exposure to stress situations including drought, hail, frost, cloudy weather and fertility imbalances. Nitrites accumulate in the lower portion of the plant when the crop yield is less than the supplied nitrogen fertility level. Nitrites are responsible for lethal silo gases when they combine with organic silage acids to form nitrous oxide. The nitrous oxide decomposes to water and nitrogen gas when they combine with organic silage acids to form nitrous oxide. The nitrous oxide decomposes to water and nitrogen dioxide (reddish-brown color) and nitrogen tetroxide (yellowish color). These forms of nitrogen are volatilized as a brownish gas in the atmosphere. This gas is heavier than air and very lethal to humans and livestock.

NITRATE LEVELS IN FORAGES FOR CATTLE

<table>
<thead>
<tr>
<th>NITRATE ION %</th>
<th>NITRATE NITROGEN PPM</th>
<th>RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0-0.44</td>
<td><1000</td>
<td>Safe to feed under all conditions</td>
</tr>
<tr>
<td>0.44-0.66</td>
<td>1000-1500</td>
<td>Safe to feed to non-pregnant animals. Limit use for pregnant animals to 50% of total ration on a DM basis.</td>
</tr>
<tr>
<td>0.66-0.88</td>
<td>1500-2000</td>
<td>Safe to feed if limited to 50% of the total DM ration.</td>
</tr>
<tr>
<td>0.88-1.54</td>
<td>2000-3500</td>
<td>Feeds should be limited to 35-40% of the total DM ration. Feeds over 2000 PPM nitrate nitrogen should not be fed to pregnant animals.</td>
</tr>
<tr>
<td>1.54-1.76</td>
<td>3500-4000</td>
<td>Feeds should be limited to 25% of total DM in the ration. Do not feed to pregnant animals.</td>
</tr>
<tr>
<td>Over 1.76</td>
<td>>4000</td>
<td>Feeds containing these levels are potentially toxic. DO NOT FEED.</td>
</tr>
</tbody>
</table>

Adapted from Cornell University. To convert % nitrate ion (NO₃⁻) to ppm Nitrate-Nitrogen divide the %NO₃⁻ by 4.4 to obtain %N0₃-N and multiply %NO₃-N x 10,000 to obtain ppm NO₃-N.
NITRATES

Similar to silo gas, the potential for high nitrate levels occurs when crops such as corn, sorghum, and some grasses are exposed to stress situations including drought, hail, frost, cloudy weather and fertility imbalance. Immature corn that undergoes these stressors accumulate toxic nitrate concentrations in the lower portion of the stover when crop yield is less than the supplied nitrogen fertility level and due to reduced plant biochemical functions impeding nitrogen from being converted to crude protein in the kernel. If it rains, three days should be allowed before resuming harvest as plants that recover from stress will eventually convert nitrates to a non-toxic form. Nitrates are not only responsible for lethal silo gas but when fed to animals, they induce symptomatic labored breathing due to interfering with the blood’s ability to carry oxygen. If the crop has been stressed or shows a marked reduction in grain content, a forage nitrate analysis is advised. As a general recommendation, feeding programs should be modified if the only source of post-fermented feed contains more than 1,000 PPM of nitrate-nitrogen. It is best to feed stressed crops as silage rather than fresh, green-chop because fermentation typically reduces plant nitrate levels by approximately 40-50% per week. When feeding ruminants, a fermented, dry-stalked corn stalks as a major source of their diet (e.g. wintering beef cows), producers need to closely monitor nitrate levels.

Drought or stressed silages that have not been inoculated should ferment 50 percent faster than fresh corn. If a sorghum or corn crop is inoculated with a reputable product, nitrate levels should be reduced by 40-50% in a matter of a few days. Luminants can be fed higher nitrate feeds if the rumen bacteria are given time to adapt by gradually increasing the volume of high-nitrate feed in the ration and if cattle are fed more frequently than normal. Problems also can be reduced by diluting the stressed silage with other feeds and avoiding the use of non-protein nitrogen sources, such as urea or ammonia.

It is a common recommendation to leave a higher stubble (e.g. 12”) when chopping drought-stressed corn to reduce the nitrate accumulation that occurs in the lower portions of the stalk. However, most growers are in need of forage inventory during drought conditions. Therefore, it is acceptable to chop at normal heights (4-6”) to increase forage inventories given that the fermentation process will degrade 40-50% of the nitrates and if the silage in question will not be the sole forage. For example, nitrate-N levels of up to 2000 ppm are acceptable if the post-fermented feed is limited to 50% of the entire diet. This means that the pre-fermented crop could have levels upward of 3500-4000 ppm nitrate-nitrogen.

PRUSSIC ACID

Under certain conditions, sorghum and sudangrass is capable of releasing hydrocyanic acid (HON or prussic acid), which makes them potentially dangerous for grazing. In the plant, HCN is attached to a larger molecule, a cyanogenic glucoside called dhurrin. Dhurrin itself is harmless, as it is simply a compound consisting of a sugar and a non-sugar molecule. However, a two-step enzymatic process results in two hydrolysis products with the final one being HCN. Prussic acid accumulates in sorghum and sudangrass and increases rapidly following stress. Poisoning occurs when animals graze young sorghum plants, or drought-stunted or stressed plants. Sorghum plants are poisonous 40-50% after a frost that kills the tops but not the crown, or when new growth is brought on by rain following a drought. If new shoots develop after a light frost, grazing should not occur until after a killing frost.

Minimum plant growth for safe grazing, green-chopping or silage making is 18 inches for sudangrass and 30 inches for sorghum-sudangrass. Forage plants should be headed out. If frost occurred at these stages, producers should wait three days before grazing or ensiling. If the plants are frost damaged prior to analysis, the test result can be misleading. In order to prevent volatilization, call the laboratory for specific instructions on how to properly submit samples.

The second test procedure is a qualitative test. It will not give PPM levels for a sample, but rather an indication of the presence of cyanide. This procedure is relatively new in terms of availability to producers. In this test “cyanesmo paper” is utilized to detect the presence of hydrocyanic acids and cyanides in freshly cut plant material. In the presence of cyanide, the pale green paper turns blue.

FIELD MOLDS

Mold spores are virtually everywhere in the field and easily survive over winter in soil and plant residues. The most common method of fungal entry in corn is through the roots during the seedling stage, down silk channels during pollination and via plant wounds from environmental or insect injury. Common field-fungi (primarily Aspergillus and Fusarium spp.) are capable of producing recognizable toxins including aflatoxin, vomitoxin (DON), fumonisin, zearalenone and T-2. Mycotoxins that may be harmful to livestock are not produced by the fungi that cause smuts or common foliar and rust diseases; however, ear mold can result in potential mycotoxin problems. Predisposing fungal diseases and other plant stressors can jeopardize corn plant health and may provide conditions that make ear molds and their corresponding mycotoxins more likely to develop. Estimates are that 70-90% of all mycotoxins are already on the plant prior to harvest and ensiling. However, the presence of visible ear molds does not correlate well with mycotoxin contamination. It should be noted that no silage acid or inoculant product is capable of degrading these preformed, field-produced toxins.

PRACTICAL APPROACHES TO MINIMIZING FIELD PRODUCED TOXINS ARE:

1. Reduce fungal populations and access sites by planting hybrids with lower moisture levels.
2. Harvest in a timely manner with particular attention to proper moisture levels.
3. Isolate silages from crops exposed to severe drought or hail damage.
4. Consider traditional tillage methods to reduce fungal spore loads in crop residue.

<table>
<thead>
<tr>
<th>PPM HCN (DRY MATTER BASIS)</th>
<th>INTERPRETATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-250</td>
<td>Very low – safe to graze.</td>
</tr>
<tr>
<td>250-500</td>
<td>Low – safe to graze.</td>
</tr>
<tr>
<td>500-750</td>
<td>Medium – doubtful to graze.</td>
</tr>
<tr>
<td>750-1000</td>
<td>High – dangerous to graze.</td>
</tr>
<tr>
<td>>1000</td>
<td>Very high – very dangerous to graze.</td>
</tr>
</tbody>
</table>

Source: Oklahoma Cooperative Extension Service Bulletin PSS-2904

128

Feed

Store

Harvest

Grow

Plant

129

Plant

Grow

Harvest

Store

Feed
Mold species isolated from silage and the field fungi in the storage structure are conducive for additional growth of elevate silage pH. If excess oxygen, yeast species are of particular concern improper feedout techniques. Crops storage conditions caused by low toxins in aerobically-challenged these fungi to produce additional pH environment found in well-managed not typically grow in the anaerobic, low STORAGE MOLDS (also called Gibberella zeae or Gibb)

Insects as vectors: Important, Very important, Less important

Temperature
- Optimum > 33°C (80°F)
- Optimum 27-29°C (80-85°F)
- Optimum 20°C (68°F)

Moisture
- Grain-fill drought stress
- Early drought, then humidity
- Wet during flowering

Insects as vectors
- Important
- Very important
- Less important

MOLD GROWTH REQUIREMENTS

<table>
<thead>
<tr>
<th>Mold Type</th>
<th>Temperature</th>
<th>Moisture</th>
<th>Insects as vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillium</td>
<td>Optimum > 33°C (80°F)</td>
<td>Grain-fill drought stress</td>
<td>Important</td>
</tr>
<tr>
<td>Fusarium</td>
<td>Optimum 27-29°C (80-85°F)</td>
<td>Early drought, then humidity</td>
<td>Very important</td>
</tr>
<tr>
<td>Aspergillus</td>
<td>Optimum 20°C (68°F)</td>
<td>Wet during flowering</td>
<td>Less important</td>
</tr>
</tbody>
</table>

STORAGE MOLDS

The field fungi described previously do not typically grow in the anaerobic, low pH environment found in well-managed silages. However, it is possible for these fungi to produce additional toxins in air-tightly-challenged storage conditions caused by low harvest moisture, poor compaction or improper feedout techniques. Crops heavily laden with Candida and Hansenula yeast species are of particular concern because these facultative organisms can elevate silage pH. If excess oxygen penetrates high pH silages, conditions are conducive for additional growth of the field fungi in the storage structure. Mold species isolated from silage and high-moisture grains primarily include Fusarium, Mucor and Penicillium with a much smaller incidence of Aspergillus and Monilia. Storage fungi like Penicillium, Mucor and Monilia do not typically invade the crop prior to harvest but their soil-borne spores are on the forage crop when they are being ensiled. Mucor and Monilia are typically white-to-grayish in color and do not produce any known mycotoxins. Their primary concern is reducing silage nutritional quality, burlkefe and palatability. Most experts agree that Penicillium (typically green-blush in color) and their toxins (primarily PR, but also patulin, because no laboratory, to date, has developed an economical screen to detect this toxin. The only practical approach to preventing growth of storage fungi is implementing slage management practices that create and maintain anaerobic slage environments.

Storage fungi like Penicillium, Mucor and Monilia do not typically invade the crop prior to harvest but their soil-borne spores are on the forage crop when they are being ensiled. Mucor and Monilia are typically white-to-grayish in color and do not produce any known mycotoxins. Their primary concern is reducing silage nutritional quality, burlkefe and palatability. Most experts agree that Penicillium (typically green-blush in color) and their toxins (primarily PR, but also patulin, because no laboratory, to date, has developed an economical screen to detect this toxin. The only practical approach to preventing growth of storage fungi is implementing slage management practices that create and maintain anaerobic slage environments.

Food contamination can occur in multiple stages of the supply chain, from farm to table. Key steps include:

- **Production**: Crops are grown under conditions that favor mold growth, such as high moisture or low pH. Fungi like Penicillium, Aspergillus, and Fusarium are common in agricultural environments.

- **Storage**: Silages and grains are stored in conditions that can promote mold growth, such as high temperatures or poor aeration. Molds like Mucor and Penicillium can thrive in these conditions.

- **Transport**: During transport, conditions like high humidity can favor mold growth, allowing molds to enter feed.
FDA CENTER FOR VETERINARY MEDICINE FEEDING RECOMMENDATIONS FOR MYCOTOXIN-CONTAINING FEEDS IN TOTAL RATION

<table>
<thead>
<tr>
<th>MYCOTOXIN</th>
<th>RECOMMENDED MAXIMUM CONCENTRATION IN TOTAL RATION</th>
<th>TYPE OF LIVESTOCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aflatoxin</td>
<td>20 ppb</td>
<td>Dairy Cattle and Calves</td>
</tr>
<tr>
<td></td>
<td>100 ppb</td>
<td>Breeding Cattle, Breeding Swine and Mature Poultry</td>
</tr>
<tr>
<td></td>
<td>300 ppb</td>
<td>Finishing Cattle and Swine</td>
</tr>
<tr>
<td>Vomitoxin (DON)</td>
<td>5 ppm</td>
<td>Ruminating Beef, Feedlot Cattle and Chickens</td>
</tr>
<tr>
<td></td>
<td>0.5 ppm</td>
<td>Swine: Feeder pigs and prepubertal gilts</td>
</tr>
<tr>
<td></td>
<td>1 ppm</td>
<td>Swine: Finishing pigs, breeding herd and boars</td>
</tr>
<tr>
<td></td>
<td>1 ppm</td>
<td>Veal Calves</td>
</tr>
<tr>
<td></td>
<td>2 ppm</td>
<td>All other animals</td>
</tr>
<tr>
<td></td>
<td>0.3 ppm</td>
<td>Breeding Swine, Young Swine</td>
</tr>
<tr>
<td></td>
<td>0.5 ppm</td>
<td>Young Males (Intact)</td>
</tr>
<tr>
<td></td>
<td>0.5 ppm</td>
<td>Feeder Swine</td>
</tr>
<tr>
<td></td>
<td>2.0 ppm</td>
<td>Older Boars and Finishing Pigs</td>
</tr>
<tr>
<td>Zearalenone</td>
<td>No acceptable levels</td>
<td>Layer Chickens</td>
</tr>
<tr>
<td></td>
<td>0.5 ppm</td>
<td>Broiler Chickens</td>
</tr>
<tr>
<td></td>
<td>0.5 ppm</td>
<td>Lactating Dairy Cows</td>
</tr>
<tr>
<td></td>
<td>5 ppm</td>
<td>Beef Feeder Cattle</td>
</tr>
<tr>
<td></td>
<td>0.5 ppm</td>
<td>Cattle (dairy and beef), Virgin Heifers</td>
</tr>
<tr>
<td></td>
<td>10 ppm</td>
<td>Bulls</td>
</tr>
<tr>
<td>T-2 Toxin</td>
<td>0.1 ppm</td>
<td>Young Swine (both sexes), replacement swine (no data)</td>
</tr>
<tr>
<td></td>
<td>0.3 ppm</td>
<td>Adult Breeding and Older Feeder Swine</td>
</tr>
<tr>
<td></td>
<td>0.5 ppm</td>
<td>Dairy Cows and Feeder Cattle</td>
</tr>
<tr>
<td></td>
<td>0.5 ppm</td>
<td>Layer Hens</td>
</tr>
<tr>
<td></td>
<td>0.75 ppm</td>
<td>Broilers</td>
</tr>
<tr>
<td>Fumonisin</td>
<td>No acceptable limit</td>
<td>Ducks, Turkeys and Geese</td>
</tr>
<tr>
<td></td>
<td>5 ppm</td>
<td>Horses</td>
</tr>
<tr>
<td></td>
<td>10 ppm</td>
<td>Swine</td>
</tr>
<tr>
<td></td>
<td>50 ppm</td>
<td>Cattle</td>
</tr>
</tbody>
</table>

Source: Mycotoxins in Feeds: CVM's Perspective http://www.fda.gov/AnimalVeterinary/Products/AnimalFoodFeeds/Contaminants/ucm050974.htm

MOVING SILAGE

The ability to move silage from one structure to another (e.g., from bags to emptied tower silos to facilitate feeding systems) is a relatively common question among producers. Unfortunately, very little research has ever been published on the subject. It is difficult to give broad-based recommendations because the success or failure of moving silage is dependent on the condition of the silage in the original storage structure. Factors influencing the success of moving silage are fermentative acid profile, contamination level with spoilage bacteria/fungi, residual sugar levels, and buffering capacity, and whether or not an inoculant was used at initial ensiling. Field experience suggests that well-ensiled, stored silage can be successfully moved if the following conditions are met:

- Inoculate the silage at harvest with a combination inoculant product containing \(L. \) *buchneri* strains.
- Move the silage as quickly as possible into the new storage structure.
- Move in the coldest time of the year to minimize the potential of fueling bacterial/fungal growth.
- Manage the move to prevent as much oxygen penetration into the silage mass as possible.

If the silage was initially inoculated at ensiling, it is generally not recommended to inoculate again at the move. If the fermentation is directed as desired, the fermentative acid products should allow for movement of silage with relatively few problems.

Analogy

- 1 inch in 16 miles
- 1 minute in 2 years
- 1 second in 11.5 days
- 1 car in bumper-to-bumper traffic from Cleveland to San Francisco
- 8.34 pounds/million gallons

Moving Silage

- 1 ppm ANALOGIES
 - 1 inch in 16 miles
 - 1 minute in two years
 - 1 second in 11.5 days
 - 1 car in bumper-to-bumper traffic from Cleveland to San Francisco
 - 8.34 pounds/million gallons

- 1 ppm = 1,000 ppb = 1,000,000 ppt

Parts Per Billion (ppb)

- 1 microgram/kilogram (µg/kg) = 1 ppb
- 1 microgram/liter (µg/l) = 1 ppb
- 1 nanogram/gram (ng/g) = 1 ppb

Analogy

- 1 silver dollar in a roll stretching from Detroit to Salt Lake City
- 1 sheet of toilet paper stretching from New York to London
- 1 pound/120 million gallons of water

- 0.001 ppm = 1 ppb = 1,000 ppt

Parts Per Trillion (ppt)

- 1 nanogram/kilogram (ng/kg) = 1 ppt
- 1 nanogram/liter (ng/l) = 1 ppt
- 1 picogram/gram (pg/g) = 1 ppt

Analogy

- 1 square inch in 250 square miles
- 1 ounce in 7.5 billion gallons of water

Source: Adapted from: http://www.llojibwe.org/drm/environmental/content/concentrations.pdf
MINIMAL MICROBIAL/ FUNGAL ACTIVITY AT FEEDOUT

In general, aerobes (such as Bacillus species), molds (such as Mucor, Monilia, Aspergillus and Penicillium species) and yeast counts should all be less than 100,000 colony forming units/gram of silage (as fed). While total counts are helpful, detailed identification of individual species and actual mycotoxin loads are much more instructive as to the source, prevention and necessary remediation.

MINIMAL PROTEIN DEGRADATION

A faster fermentation typically results in reduced plant and microbial proteolysis. Measuring ammonia nitrogen as a percent of total nitrogen is a good indicator of the extent of proteolysis. Values should be less than 5% in corn/cereals and less than 10% in grass/legume silages. Repep-in soluble nitrogen as a percent of total nitrogen of over 20% indicates excessive heating in high-moisture ear or shelled corn. Heat damage (unavailable protein from the Maillard Reaction) is measured by acid detergent nitrogen as a percent of total nitrogen. Levels exceeding 12% are indicative of excessive heating which may require adjustment to the crude protein level of the feedstuff.

QUARTERING PROCEDURES

Allows reduction of the sample size while maintaining a representative sample. Thoroughly mix material to be sampled (e.g. by rolling back and forth on a piece of plastic), then pour into a uniformly shaped pile on a clean surface.

1. Divide sample into four equal parts (quarters), using a drywall joint knife, trowel or any straight-edged tool.
2. Discard two opposite quarters and save the other two.
3. Combine the two saved quarters into a pile and then quarter again.
4. Be sure to collect fine material at the bottom of the saved sample.
5. Discard two opposite quarters and repeat step 3.
6. Continue to do this until you have a pile that is the amount you want to submit for laboratory analysis.

Source: Dave Taysom, Garyland Labs, Inc.
not only does nutrient content of forages vary with field and cutting, so does harvest moisture. Silages should be monitored at least weekly for moisture content and ration adjustments made when moisture changes by more than 2-3% points. Snow, rain soaking feed on the bunker face and differing harvest Moistures from diverse fields can all \[\ldots\]
chopper capacity is delivering 22 truckloads per hour to the silage pit, then you would collect 1 sample from every other truck and be somewhat confident that the sample taken from each truck is truly representative of the entire truckload. If you want to be 95% confident in each truck during each hour of silage delivery, then you would need 11 samples from each of the 22 trucks for a total of 242 samples; which would be unmanageable and expensive to test. The issue then becomes: 1) what is the population (“within an individual truck” or “within the number of trucks per hour” or “within a field”), 2) what is the acceptable level of confidence required for that trait and 3) what can be agreed to by the grower and buyer (including the lab or method chosen to determine moisture and other parameters such as starch).

A practical approach from a relatively large field might be the following:

1. Every other truck from a particular field will be sampled at the silage pit using an agreed upon sampling protocol.
2. That sample will be delivered to the scale operator.
3. At the conclusion of harvesting the field, the scale operator will empty the sample bags from trucks delivering from the same field into a 5-gallon bucket.
 a. This composite sample will be mixed and sub-sampled into 2 zip-lock bags and labeled with the time and field.
 b. One sample will be kept in the refrigerator until the end of the day when it will be presented to the lab for moisture testing.
 c. The other sample will be frozen and held until the lab results are returned for its paired sample.
4. Upon receipt of the moisture results from the lab, moistures for that field will be averaged and applied to all loads weights delivered from that field.

MINIMUM AVERAGE DIFFERENCE (d) IN TRAITS WHICH CAN BE DETECTED WITH A GIVEN NUMBER OF LOCATIONS OR SAMPLES (n)

<table>
<thead>
<tr>
<th>Minimum average difference (d)</th>
<th>Number of locations (or samples) (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>3</td>
</tr>
<tr>
<td>3.2</td>
<td>5</td>
</tr>
<tr>
<td>3.0</td>
<td>7</td>
</tr>
<tr>
<td>2.8</td>
<td>9</td>
</tr>
<tr>
<td>2.6</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>15</td>
</tr>
<tr>
<td>2.0</td>
<td>17</td>
</tr>
<tr>
<td>1.8</td>
<td>19</td>
</tr>
<tr>
<td>1.6</td>
<td>21</td>
</tr>
<tr>
<td>1.4</td>
<td>23</td>
</tr>
<tr>
<td>1.2</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: D.A. Sapena, Ph.D.

MICROWAVE OVEN AND GRAM SCALE MOISTURE DETERMINATION METHOD

Silage, haylage, or hay moisture content can be evaluated in a microwave oven. This technique is fast, easy to perform, and relatively accurate in determining the moisture content of any forage. The major drawback with this system is an electrical power source is required, which is not always convenient for testing forages. In addition to a microwave oven, a small gram scale, paper plate for each sample and glass of water are needed.

1. Place the paper plate on the scale and note how many grams it weighs. A good suggestion is to write this weight on the edge of the plate. Re-weight the plate each time it is used.
2. Weigh 50 to 100 grams of chopped forage onto the plate on the scale. Cored samples do not need further chopping.
3. Spread the sample evenly over the plate and place it in the microwave with a half-filled glass of water in the back corner. Silage samples, estimated to be in the 50 to 75 percent moisture range, can be heated initially for four minutes. Hay samples with less than 30 percent moisture should only be heated for three minutes.
4. Weigh and record the weight, then stir the forage on the plate and place it back in the oven for one additional minute.
5. Repeat procedure #4 again, but only run the microwave oven for 30 seconds this time. Continue drying and weighing until the weight becomes constant. Be careful not to heat the forage to the point of charring. If this occurs, shorten the drying intervals.
6. To calculate the moisture percentage, subtract the last dry weight from the original weight and divide this number by the wet weight. Now multiply by 100. This is the moisture content of the sample.

Example: Original wet weight was 90 grams. Dry weight is 60 grams.

\[
\frac{90 - 60}{90} \times 100 = 33.33\%
\]

Easy Method: If exactly 100 grams of forage was weighed onto the plate, the final dry weight (minus the paper plate weight) subtracted from 100 is moisture content. Alternatively, the final dry weight is the dry matter percentage.

Example: Original wet weight=100 grams. Final dry weight=55 grams.

\[
100 - 55 = 45\% \text{ moisture content or } 55\% \text{ DM}
\]
ANALYTICAL ERRORS

Forage analysis is important for balancing diets and for gaining insight into the impact of management practices on forage quality. Sampling error at the farm can certainly affect how representative the sample is compared to what is being fed. Similarly, there are factors which affect analytical variation in the values being reported on laboratory reports. These factors are bias, precision and accuracy. Bias is defined as a systematic error introduced into sampling or testing. Precision references the ability of a measurement to be consistently reproduced while accuracy is whether the reported value is correct.

NIRS VERSUS WET CHEMISTRY

Wet chemistry refers to the more laborious, bench-top chemistry conducted in the laboratory. Near Infrared Spectroscopy (NIRS) is another analytical approach valued for repeatability and rapid turnaround of data. A major advantage to NIR over wet chemistry is cost savings. It is possible to analyze more samples, more often, for the same but compared to more expensive wet chemistry. This helps producers manage feedstuff nutrient variation through more frequent analysis. It is a common recommendation to only use wet chemistry analyses, especially following a typical growing season. However, that is not necessary with laboratories that use diverse samples to frequently update their NIR calibrations. If the lab is a reputable lab willing to share calibration statistics, NIRS is the best way to stretch analytical dollars.

NIRS had been discussed in the literature since 1939 but it was not until 1968 that Karl Norris and co-workers at the Instrumentation Research Lab USDA-Beltsville proved that absorption of specific wavelengths could be correlated with chemical analysis of other grains and forages. Early in 1978, John Shenk and his research team developed a portable instrument for use in a mobile van to deliver nutrient analysis of forages directly on-farm and at hay auctions. This evolved into the university extension mobile NIRS vans in Pennsylvania, Minnesota, Wisconsin and Illinois. In 1978, the USDA NIR Forage Network was founded to develop and test commercial instruments and software packages to advance the technology of portable instruments for forage and forages. The current technology of portable instruments is such that users should expect increased errors with undried, unground silage or TMR samples of about 50 % compared to laboratory NIR (dried, ground) results. For example in corn silage, laboratory NIR errors are less than 2% units for dry matter and 3% units for NDF. Users should also investigate the type and spectral range of hand-held instruments because many are only capable of predicting dry matter and not all the constituents typically required for forage evaluation or pricing.

As routine users of NIR values, producers and nutritionists should feel comfortable asking laboratories or equipment manufacturers about their NIR statistics. This will help instill confidence in these values similar to the way statistics (e.g. P-values) determine the confidence in research trial results. Listed below are three NIR statistics that reputable NIR laboratories should be able to provide:

1. **Number of samples in the calibration**
 - The narrower the range in sample differences, the more difficult it is for NIR (or wet chemistry) to detect those differences. Typically 80-100 samples are required for developing an initial calibration with up to hundreds of samples in a “mature” calibration.

2. **Standard error of calibration (SEC)**
 - Defines how well the NIR calibration predicts the wet chemistry values that are used to build the calibration. Low SEC values are desired. For example, if the wet chemistry value is 30 and the SEC is 5, this means approximately 66% of the NIR values should fall within the range of 30 +/- 3 (e.g. 27 to 33).

3. **Regression coefficient (R² or RSQ)**
 - The “best fit” line when NIR values are plotted against the wet chemistry values. High R² values are desired. An R² of 1.0 means 100% of the sample variation is being explained by the calibration.

ANALYTICAL VARIATION

<table>
<thead>
<tr>
<th>Low Precision, Poor Accuracy</th>
<th>Good Precision, High Bias, Poor Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>!True Value</td>
<td>!True Value</td>
</tr>
</tbody>
</table>

Source: Dave Tapson, Dairyland Labs

1. Number of samples in the calibration set (N) - influenced by the typical variation in the trait of interest. The narrower the range in sample differences, the more difficult it is for NIR (or wet chemistry) to detect those differences. Typically 80-100 samples are required for developing an initial calibration with up to hundreds of samples in a “mature” calibration.
PROXIMATE ANALYSIS

Proximate analysis is a chemical scheme for describing feeds that was developed in Germany over 100 years ago. It relies on destructive laboratory methods to determine:

- Dry matter (OM)
- Ash (minerals)
- Crude Protein (CP)
- Kjeldahl process measures nitrogen (N) content
- Ether Extract (fat) or
- Nitrogen Free Extracts
- Mostly sugars and starch but may contain some fiber
- Determined by difference (100-all other analytes), not by direct analysis

Proximate analysis was a starting point for determining the nutritive value of feeds but failed to provide information on feedstuff digestibility, nutrient adequacy, palatability or toxicity.

Detergent System of feed analysis. The state of laboratory feed analysis in the 1960s triggered the research program of Peter Van Soest to develop the Detergent System of feed analysis. The use of many of the proximate analysis methods. However, the relative poor state of laboratory feed analysis in the 1960s triggered the research program of Peter Van Soest to develop the Detergent System of feed analysis. The detergent system replaced crude fiber (CF) and N-free extract with:

- neutral detergent solubles (NDS)
- neutral detergent fiber (NDF)
- acid detergent fiber (ADF)
- lignin

Over a number of years, Van Soest convinced the scientific community to replace the proximate analysis system with the Detergent System making it possible to explain nutritional responses in terms of feed digestibility and intake. As with the crude fiber procedure, the lignin is the nutrient that continues usage because NDF is more commonly used in many areas of the world. While NDF has largely replaced crude fiber among scientists, crude fiber continues usage because NDF is not a government-approved method for legal trade in many countries.

In the 1980s, David Mertens (Ph.D. student of Peter Van Soest) started efforts to standardize NDF analysis among laboratories in the U.S. Mertens realized the only way to reduce error among laboratories was to prescribe a single NDF method. Mertens’ efforts resulted in recommendations that all feeds be amylase treated (to remove starch), sodium sulphite be used (to remove plant and microbial protein) and that NDF be reported on an ash-free basis (e.g. “om”). The resultant value would be designated aNDFom.

The only methodological variation considered was that feeds with greater than 100 grams of fat/kg be pre-extracted with a suitable solvent. Acceptance of the NDF method by the AOAC was a protracted process, but in 1986, ADF began a slow, steady decline in the U.S., although it remains commonly used in many areas of the world. While NDF has largely replaced crude fiber among scientists, crude fiber continues usage because NDF is not a government-approved method for legal trade in many countries.

Over a number of years, Van Soest convinced the scientific community to replace the proximate analysis system with the Detergent System making it possible to explain nutritional responses in terms of feed digestibility and intake. As with the crude fiber procedure, the lignin is the nutrient that continues usage because NDF is more commonly used in many areas of the world. While NDF has largely replaced crude fiber among scientists, crude fiber continues usage because NDF is not a government-approved method for legal trade in many countries.

In the 1980s, David Mertens (Ph.D. student of Peter Van Soest) started efforts to standardize NDF analysis among laboratories in the U.S. Mertens realized the only way to reduce error among laboratories was to prescribe a single NDF method. Mertens’ efforts resulted in recommendations that all feeds be amylase treated (to remove starch), sodium sulphite be used (to remove plant and microbial protein) and that NDF be reported on an ash-free basis (e.g. “om”). The resultant value would be designated aNDFom.

The only methodological variation considered was that feeds with greater than 100 grams of fat/kg be pre-extracted with a suitable solvent. Acceptance of the NDF method by the AOAC was a protracted process, but in 1986, ADF began a slow, steady decline in the U.S., although it remains commonly used in many areas of the world. While NDF has largely replaced crude fiber among scientists, crude fiber continues usage because NDF is not a government-approved method for legal trade in many countries.
Confusion also surrounds the difference between nutrient digestibility (or digestion coefficient) and digestible nutrient. Nutrient digestibility is expressed as a percentage of the nutrient with a capital “D” suffix (e.g. NDFD, as a % of DM). Nutrient digestibility and digestible nutrient are not interchangeable terms, even though the concepts are related.

ENERGY SYSTEMS

Total digestible nutrients (TDN) are a measure of feedstuff energy from the organic compounds in feed expressed as % or pounds. TDN uses nutrient values from laboratory proximate analysis multiplied by standard digestion coefficients from digestion and is calculated as follows:

%TDN = % digestible crude protein + % digestible crude fiber + % digestible nitrogen free extract + (% digestible ether extract x 2.25)

The primary limitation of the TDN system is chemical analysis of feed and manure does not relate well to animal metabolism. TDN ignores important losses such as urine, gas and especially heat. These limitations led to the development of the Net Energy System where the units of energy are expressed in terms of Megacalories (1,000 kilocalories or the amount of heat to raise the temperature of one gram water from 14.5ºC to 15.5ºC).

A summative energy equation approach has been used by most commercial labs to calculate the Net Energy of Lactation (NEL) since it was published in the Seventh Revised Edition (2001) of the NRC Nutrient Requirements of Dairy Cattle. The summative approach utilizes values for crude protein, fat, non-fiber carbohydrate (NFC) and NDF, along with corresponding digestibility coefficients for these nutrients.

How a Lab Calculates uNDF, dNDF and NDFD:

Assuming the lab starts with 20 grams of corn silage dry matter that was 42% NDF, you have 8.4g of starting NDF (20*42%). If after 24 hours of rumen fluid incubation there are 5.7 grams of residue containing 71% NDF, you have 4g of final NDF (5.7*71%). If after 240 hours of incubation there are 3 grams of residue containing 90% NDF, you have 2.7g of final NDF (3*90%).

<table>
<thead>
<tr>
<th>Condition</th>
<th>uNDF (24 hour, % of DM)</th>
<th>uNDF (240 hour, % of DM)</th>
<th>dNDF (24 hour, % of DM)</th>
<th>NDFD (24 hour, % of NDF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn Silage</td>
<td>4/20 = 20%</td>
<td>2.7/20 = 13%</td>
<td>NDFD%NDF = 52*42 = 21</td>
<td>(NDF – uNDF24hr)/NDF = (42 – 20)/42 = 52%</td>
</tr>
</tbody>
</table>

Corn Silage Lab Values

- **Typical “Non-BMR”**
- **Corn Silage Lab Values**
 - Protein, Fat, Sugar and Minerals
 - Starch
 - Digestible NDF (digestion rates (Kd) controlled by growing environment)
 - Undigestible NDF
 - Total NDF% = 42%

- Other nutrients = 23%
- Starch = 35%

DIGESTION RATES

Effective nutrient degradability as defined by the Orskov equation is Kd/ (Kd + Kp) where Kd is the rate of digestion (e.g. 2-7%/hour for fiber) and Kp is the rate of feed passage from the rumen (e.g. 5%/hour for high producing dairy cow). Effective nutrient supply can then be calculated as dry matter intake * (Kd / (Kd + Kp)).

Laboratories can provide estimates of Kd values for NDF with published equations from Cornell University. It utilizes a single time point NDFD value (e.g. 24, 30 or 48-hour), NDF, lignin and an assumed digestion lag value (e.g. six hours).

More recently, a gas production system named Fermentrics™ became commercially available allowing for the direct measurement of digestion rates for both fast (primarily starch) and slow (primarily fiber) pool nutrients. Curve peeling techniques and published equations that are used to estimate the carbohydrate pool Kd values (e.g. CHO B1, B2 and B3) allow for measured rates to be used for feedstuffs rather than relying on book values.

A modification of the summative approach was used in the development of the University of Wisconsin MILK2006 approach to assigning milk per acre and milk per ton values to alfalfa and corn silage.
FORAGE FEEDING GUIDELINES

Feed intake by ruminants is primarily influenced by:
1) forage fiber concentrations (NDF, uNDF),
2) forage digestion characteristics such as fragility, filling-effect and digestibility (NDFD), and
3) diet fermentability (particularly starch).

It has been proposed that problems such as milk fat depression in dairy cattle may be related to variation in forage quality, dry matter and palatability. These affect daily NDF intake, rumination and the number of palatability. These affect daily NDF in forage quality, dry matter and palatability. The next sections will provide generalized feeding considerations for alfalfa, high-moisture corn and corn silage.

ALFALFA FEEDING GUIDELINES

Alfalfa is arguably one of the most variable feeds on the farm. This is due to field-by-field variations in the age of stand (grass content), harvest maturity and moisture, fiber digestibility affected by the growing environment and issues surrounding fermentation and palatability. Producers can improve the consistency and quality of alfalfa silage by focusing on harvest maturity. The use of the PEAQ stick (predictive equations for alfalfa quality) for assessing alfalfa maturity and NDF levels has been around for decades, and is a tool more growers should be using to monitor plant maturity. Alfalfa is fed to ruminants to provide energy, protein and fiber. Alfalfa silage with a high RFQ (above 180) will have relatively low levels of ADF, NDF and effective fiber (ADF+uNDF), and will also have high levels of crude protein, much of which is in the readily soluble form. However, with the trend towards higher DM silage to reduce cellulostal fermentation, the soluble/degradable protein levels in alfalfa silages are significantly lower than when 30% DM alfalfa silage was the norm. Careful attention to NDFD and ash content will also help ensure a digestible crop with less fermentation issues. Unlike starch, the fiber in ensiled forages does not increase in ruminal digestibility over time due to the fermentation process. The NDFD at harvest is what the nutritionists will have to work with the entire feeding period. Most nutritionists would prefer that producers delay alfalfa silage harvest and deal with lowered digestibility than suffer with feeding rained-on, poorly fermented silages. Field experience has also conditioned nutritionists to target ideal moisture levels at around 60% to reduce protein degradation and the potential for climatic alfalfa silages.

HIGH-MOISTURE CORN FEEDING GUIDELINES

To capture the most starch per acre, high-moisture (HMC) harvest should not begin until the kernels have reached blacklayer and are physiologically mature; which means kernel moistures of 34-36% for many hybrids. The objective in HMEC or snaplage is not to discuss kernel moisture when making harvest recommendations for HMC, high-moisture ear corn (HMEC) or snaplage because most growers own a kernel moisture tester and the final product can have varying amount of ear or husks which impacts moisture levels. With HMEC or snaplage, the cob contributes more moisture than the kernel with the traditional thumb rule that the final mix will be 3-4 percentage units wetter than the kernel (based on ear being about 10% cob).

Those with experience feeding HMEC or snaplage agree that it is best to "err on the wet side" when harvesting. When the crop gets too dry (e.g. kernel moistures <25%), problems start to mount in terms of digestibility, palatability, inadequate kernel damage and particle size in the feeding. Simultaneously increase in digestibility over time (about 2% units per month). This is especially important if transitioning from feeding drier high-moisture corn. High-moisture corn is a bit different from corn silage in this respect. Both animal trials and protein solubility analysis show that high-moisture corn appears to continually shift upwards in starch digestibility for about 12 months. Corn silage tends to plateau after six months in fermented storage. The difference between corn silage and high-moisture corn is likely to be more immature kernels at time of corn silage harvest and the more extensive fermentation (lower pH) experienced in corn silage. For those herds feeding very high levels of corn silage (>20 lbs DM/cow/day), it may make sense to target highly fermentable HMC or snaplage in the first 6-7 months of feeding and slowly transition to a less fermentable starch source (dry corn or lower moisture HMC). This approach may compliment the starch in corn silage which will simultaneously increase in digestibility over time in storage.
When discussing starch digestion, it is important to clarify if the site is rumen, small intestines or total tract.

In some feeding situations, it may be beneficial to bypass ruminal digestion and increase intestinal digestion especially if microbial protein production is high and acidosis is a concern.

Total tract digestion is lower in lactating cows than steers primarily because cows have higher feed intake and more fiber in their diets which increases ruminal outflow rates.

Fisking shifts the site of digestion from the rumen to the intestines; whereas the fermentation process shifts the site of digestion toward the rumen.

Changes in Ruminal Digestibility of HMC of Varying Moisture Levels

Most ration balancing software does not adjust for increasing digestibility over time in fermenting storage. For the 28% moisture corn, if feeding 10 lbs in October, it would need to reduce to 7 lbs by spring.

DRC - The dry rolled corn treatment showed no change over time for ISDMD, but when the same hybrid was harvested as wetter HMC, ISDMD increased over time in storage.

ISDMD - in situ dry matter disappearance

RECON - reconstituted

Site of Starch Digestion as Influenced by Corn Grain Processing Method (Rolled, Fermented, Flaked)

When comparing starch digestion, it is important to note that the site of digestion is influenced by various factors such as processing methods and storage conditions.

<table>
<thead>
<tr>
<th>Processing Method</th>
<th>Digestion % of Dietary Starch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry rolled</td>
<td>48.8</td>
</tr>
<tr>
<td>High moisture</td>
<td>60.6</td>
</tr>
<tr>
<td>Steam flaked</td>
<td>54.2</td>
</tr>
</tbody>
</table>

Cows Steers Cows Steers Cows Steers Dry rolled High moisture Steam flaked 48.8 60.6 54.2 23.0 17.7 28.4 14.7 7.0 17.0 51.0 36.6 51.8 54.2

Source: Klopfenstein U of NE, Lincoln.

Kernel Damage

Perhaps the most overlooked aspect of assessing corn silage at the bunker is attention to physical damage of the corn kernels. Recent advances in roller mill design (e.g. Shredlage® and KernelStar) have vastly improved the ability to adequately process kernels in corn silage and snaplage. When comparing the affects of storage, the Pioneer 30% HMC and Steam flaked treatment were significantly lower in ruminal damage compared to the Dry rolled and High moisture treatments.

Kernel damage can be monitored by the following criteria:

1. **Physical damage:** Look for signs of damage such as cracked or broken kernels.
2. **Microbial damage:** Check for signs of microbial growth or spoilage.
3. **Residue:** Assess if residue is present or if the silage is clean.

Source: Klopfenstein U of NE, Lincoln.

Corn Silage Feeding Guidelines

With safety in mind, a good starting point to assess corn silage is by physically observing the storage structure. Assessing face management is a general indicator of detail to forage management. Look for signs of top and side spoilage and if extensive, investigate how spoiled feed is being handled. It is helpful to know if corn silage is being fed from more than one storage structure and how many different hybrids were ensiled in the same structure. Variation in silage dry matter, starch and NDF content can be reduced by feeding off the entire face rather than removing small sections.

Many nutritionists like to “bury their nose” in silage to assess the smell. This is not recommended for three reasons:

1. It is not a healthy practice to be inhaling mold spores often found in silage.
2. If there is an undesirable fermentation profile, this can be easily detected at a distance (and confirmed with VFA analysis), and
3. Smell is not a very good field indicator of either palatability or nutritional value.

Look for signs of heating in the corn silage. Steam rolling off a recently faced bunker during cold weather does not necessarily indicate aerobic instability problems. This is often just ambient harvest temperature and normal fermentation heat that is retained by water acting as a heat sink in the silage mass. What is a better indicator of microbial-induced heating is if the silage continues to heat up after it has been faced and lying in a pile in the feed bunk.

While fiber digestibility does not change over time in fermented storage, starch digestibility in corn silage must be monitored due to the tremendous impact of both degree of kernel processing and time in storage.
The starch in corn silage is often considered the “villain” when cows fed high levels of silage do not respond as expected, experience low butterfat tests or display inconsistency in manure scores. The villain-image has lessened as laboratory starch, starch digestibility and related value studies have become commonly available and nutritionists have learned to focus on reducing supplemental grain to compliment the starch delivered in modern corn genetics. Starch levels in the entire dairy diet typically range from 30% for new crop corn silage to as low as 22-24% when feeding long-fertilized corn silage. It is virtually impossible to exceed these total ration starch levels with corn silage, even under the highest inclusion rates of the high-starch corn silage.

There has been a tendency in the past to assume that excess CP also takes up fermentation space in the ration that could be filled with other high-value feedstuffs. However, excess CP can result in a net energy burden to the animal from protein deamination to ammonia and conversion to urea for excretion. Success has been achieved in rations containing upwards of 25 lbs of DM from high-starch corn silage by targeting 15-16% CP levels with conservative levels (8.8-9.5%DM) of RDP. Use of ration software to track amino acid intake has allowed for reduction in increasingly expensive CP sources like soybean meal. These ration savings can be effectively used to supplement more balanced amino acid blends of plant-animal-marine proteins or commercial bypass amino acid products.

Corn silage inclusion rates are on the rise due to availability of supply, energy density, consistency and palatability. Close attention should be paid to silage starch content and changing digestibility over time in foraged silage, NDF content and digestibility and physical attributes such as physico-technological NDF, kernel damage and feed storage and delivery management. High corn silage based rations should include moderate levels of CP and rumen-degraded protein with specific attention to lysine and methionine levels supplied from plant-animal-marine or rumen-protected sources.

TOTAL MIXED RATION COMPOSITION FROM 14 COMMERCIAL NEW YORK DAIRIES

<table>
<thead>
<tr>
<th>Item</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cows</td>
<td>1560</td>
<td>108</td>
<td>270</td>
<td>920</td>
<td>140</td>
<td>100</td>
<td>700</td>
<td>60</td>
<td>180</td>
<td>45</td>
<td>220</td>
<td>46</td>
<td>250</td>
<td>53</td>
</tr>
<tr>
<td>Milk, lbs</td>
<td>88</td>
<td>86</td>
<td>85</td>
<td>116</td>
<td>89</td>
<td>85</td>
<td>89</td>
<td>60</td>
<td>95</td>
<td>80</td>
<td>75</td>
<td>85</td>
<td>85</td>
<td>72</td>
</tr>
<tr>
<td>Milk fat, %</td>
<td>3.6</td>
<td>3.6</td>
<td>3.8</td>
<td>3.2</td>
<td>3.65</td>
<td>4.0</td>
<td>3.5</td>
<td>4.0</td>
<td>3.6</td>
<td>3.85</td>
<td>3.7</td>
<td>3.56</td>
<td>3.64</td>
<td></td>
</tr>
<tr>
<td>Milk, True Protein, %</td>
<td>3.05</td>
<td>3.2</td>
<td>3.07</td>
<td>3.0</td>
<td>3.0</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>3.2</td>
<td>3.2</td>
<td>3.05</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUN, mg/dl</td>
<td>10.6</td>
<td>12.0</td>
<td>-</td>
<td>8.0</td>
<td>8-10</td>
<td>9.0</td>
<td>7-9</td>
<td>9.0</td>
<td>8-9</td>
<td>8-9</td>
<td>10</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ration CP, %</td>
<td>15.9</td>
<td>15.5</td>
<td>15.7</td>
<td>15.9</td>
<td>14.3</td>
<td>16.0</td>
<td>16.3</td>
<td>16.5</td>
<td>15.8</td>
<td>15.6</td>
<td>15.0</td>
<td>15.6</td>
<td>15.5</td>
<td>15.8</td>
</tr>
<tr>
<td>Microbial Protein (MP), g/cow</td>
<td>2625</td>
<td>2720</td>
<td>2961</td>
<td>3306</td>
<td>2599</td>
<td>3016</td>
<td>2792</td>
<td>1971</td>
<td>2740</td>
<td>2205</td>
<td>2256</td>
<td>2419</td>
<td>2739</td>
<td>-</td>
</tr>
<tr>
<td>Methionine, % of MP</td>
<td>1.94</td>
<td>4.96</td>
<td>2.05</td>
<td>2.71</td>
<td>2.10</td>
<td>1.77</td>
<td>2.79</td>
<td>1.78</td>
<td>1.85</td>
<td>1.91</td>
<td>1.89</td>
<td>1.91</td>
<td>1.93</td>
<td>1.90</td>
</tr>
<tr>
<td>Lys:Met</td>
<td>3.41</td>
<td>3.16</td>
<td>3.12</td>
<td>2.51</td>
<td>3.05</td>
<td>3.51</td>
<td>2.38</td>
<td>3.16</td>
<td>3.12</td>
<td>3.31</td>
<td>3.31</td>
<td>3.31</td>
<td>3.31</td>
<td>3.31</td>
</tr>
<tr>
<td>NDF, %</td>
<td>28.9</td>
<td>30.8</td>
<td>30.7</td>
<td>30.9</td>
<td>31.4</td>
<td>31.5</td>
<td>32.2</td>
<td>30.5</td>
<td>30.5</td>
<td>32.3</td>
<td>31.5</td>
<td>32.3</td>
<td>31.5</td>
<td>33.7</td>
</tr>
<tr>
<td>Forage NDF, % of BW</td>
<td>0.88</td>
<td>0.86</td>
<td>0.94</td>
<td>0.88</td>
<td>0.80</td>
<td>0.86</td>
<td>0.88</td>
<td>0.80</td>
<td>0.89</td>
<td>0.78</td>
<td>0.78</td>
<td>0.80</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>NFC, %</td>
<td>43.4</td>
<td>41.9</td>
<td>40.6</td>
<td>41.5</td>
<td>42.4</td>
<td>38.1</td>
<td>39.1</td>
<td>40.0</td>
<td>39.3</td>
<td>41.3</td>
<td>40.7</td>
<td>44.4</td>
<td>42.5</td>
<td>40.0</td>
</tr>
<tr>
<td>Starch, %</td>
<td>28.5</td>
<td>27.1</td>
<td>31.6</td>
<td>28.7</td>
<td>29.3</td>
<td>24.0</td>
<td>27.6</td>
<td>26.3</td>
<td>28.7</td>
<td>28.6</td>
<td>27.6</td>
<td>29.5</td>
<td>28.6</td>
<td>29.0</td>
</tr>
<tr>
<td>Sugar, %</td>
<td>3.5</td>
<td>3.1</td>
<td>4.2</td>
<td>5.4</td>
<td>5.0</td>
<td>5.3</td>
<td>5.1</td>
<td>7.0</td>
<td>3.5</td>
<td>3.7</td>
<td>3.4</td>
<td>4.1</td>
<td>3.7</td>
<td>3.8</td>
</tr>
<tr>
<td>Fat, %</td>
<td>4.3</td>
<td>3.8</td>
<td>4.3</td>
<td>5.1</td>
<td>4.4</td>
<td>5.2</td>
<td>5.4</td>
<td>5.4</td>
<td>5.1</td>
<td>4.8</td>
<td>4.0</td>
<td>5.2</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>Forage, % of ration DM</td>
<td>57</td>
<td>60</td>
<td>49</td>
<td>60</td>
<td>59</td>
<td>57</td>
<td>53</td>
<td>50</td>
<td>51</td>
<td>59</td>
<td>59</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Corn silage, % of forage</td>
<td>80</td>
<td>72</td>
<td>37</td>
<td>68</td>
<td>53</td>
<td>48</td>
<td>64</td>
<td>0</td>
<td>58</td>
<td>56</td>
<td>49</td>
<td>38</td>
<td>74</td>
<td>46</td>
</tr>
</tbody>
</table>

Source: Chase et al., 2009
Monitoring particle size is very important in a high corn silage ration. In addition to looking at corn silage chop length (ideally about 15mm or about 26mm if using a Shreddigex® kernel processor), it is important to note the chop length and texture of the other forages in the TMR. Overlap of old-crop and new-crop corn silage feeding is helpful in minimizing cow adjustment at switch-over time. If possible, watch the feeder load the TMRR to observe both feed sequencing and length of time the corn silage has been exposed to mixing. Particle size and nutritional analysis of the TMR mix at feed delivery is often helpful to detect mixer abuse of fiber particle size as well as assess mixer consistency. Some herds feeding high corn silage rations have resorted to incorporating straw or poor quality hay in the ration to help build a mat-matrix and stimulate rumination. This approach often helps when forage particle size is not suitable. However, close attention to particle size of added straw is required to prevent sorting and acidosis episodes.

Nutritionists feeding high corn silage rations tend to feed slightly higher levels of NDF in the entire ration. A University of Minnesota review indicated 30% NDF in the ration can be fed in high corn silage rations without loss of milk production. In rations where physically effective NDF (pNDF) levels are tracked, most high corn silage herds prefer balancing at 22-23% pNDF which is at the high-end of typical pNDF recommendations. Most nutritionists prefer a minimum of 12-12.5 lbs of NDF from forage in high corn silage rations. This works out to about 22% of the ration NDF coming from forages. These fiber levels are often exceeded (24-25% total NDF from forages) if the corn silage is particularly high in NDF due to either impact of the growing season (drought), hybrid genetics or the use of inoculants proven to improve NDFD. Some nutritionists monitor the relationship of forage NDF to the level of rumen fermentable starch (determined by calculation or estimated via in situ or in vitro lab methods). Providing 1.25 pounds of NDF for each one pound of fermentable starch has proven a useful thumb rule, especially in rations containing very high NDFD corn silage.

The following compendium of forage analysis terms and descriptions is provided for convenience of the reader. It should be noted that most commercial laboratories will have analytic definitions and their unique analytical procedures described in more detail on their respective websites.

Dry Matter (DM): DM is the resulting feedstuff after 100% of the water has been removed by drying (100% - moisture). Drying causes delay in analysis turnaround so some labs dry to a certain moisture and perform an NIR scan to account for any residual moisture. Feed analysis reports typically report nutrients on an “as fed” or “as is” basis and on a “DM” basis. All dairy and beef nutrition is based around DM values due to the large variation in moisture content in ruminant feedstuffs.

Monitoring particle size is very important in a high corn silage ration. In addition to looking at corn silage chop length (ideally about 15mm or about 26mm if using a Shreddigex® kernel processor), it is important to note the chop length and texture of the other forages in the TMR. Overlap of old-crop and new-crop corn silage feeding is helpful in minimizing cow adjustment at switch-over time. If possible, watch the feeder load the TMRR to observe both feed sequencing and length of time the corn silage has been exposed to mixing. Particle size and nutritional analysis of the TMR mix at feed delivery is often helpful to detect mixer abuse of fiber particle size as well as assess mixer consistency. Some herds feeding high corn silage rations have resorted to incorporating straw or poor quality hay in the ration to help build a mat-matrix and stimulate rumination. This approach often helps when forage particle size is not suitable. However, close attention to particle size of added straw is required to prevent sorting and acidosis episodes.

Nutritionists feeding high corn silage rations tend to feed slightly higher levels of NDF in the entire ration. A University of Minnesota review indicated 30% NDF in the ration can be fed in high corn silage rations without loss of milk production. In rations where physically effective NDF (pNDF) levels are tracked, most high corn silage herds prefer balancing at 22-23% pNDF which is at the high-end of typical pNDF recommendations. Most nutritionists prefer a minimum of 12-12.5 lbs of NDF from forage in high corn silage rations. This works out to about 22% of the ration NDF coming from forages. These fiber levels are often exceeded (24-25% total NDF from forages) if the corn silage is particularly high in NDF due to either impact of the growing season (drought), hybrid genetics or the use of inoculants proven to improve NDFD. Some nutritionists monitor the relationship of forage NDF to the level of rumen fermentable starch (determined by calculation or estimated via in situ or in vitro lab methods). Providing 1.25 pounds of NDF for each one pound of fermentable starch has proven a useful thumb rule, especially in rations containing very high NDFD corn silage.

Dry Matter (DM): DM is the resulting feedstuff after 100% of the water has been removed by drying (100% - moisture). Drying causes delay in analysis turnaround so some labs dry to a certain moisture and perform an NIR scan to account for any residual moisture. Feed analysis reports typically report nutrients on an “as fed” or “as is” basis and on a “DM” basis. All dairy and beef nutrition is based around DM values due to the large variation in moisture content in ruminant feedstuffs.

Most nutritionists prefer a minimum of 12-12.5 lbs of NDF from forage in high corn silage rations. This works out to about 22% of the ration NDF coming from forages. These fiber levels are often exceeded (24-25% total NDF from forages) if the corn silage is particularly high in NDF due to either impact of the growing season (drought), hybrid genetics or the use of inoculants proven to improve NDFD. Some nutritionists monitor the relationship of forage NDF to the level of rumen fermentable starch (determined by calculation or estimated via in situ or in vitro lab methods). Providing 1.25 pounds of NDF for each one pound of fermentable starch has proven a useful thumb rule, especially in rations containing very high NDFD corn silage.

Dry Matter (DM): DM is the resulting feedstuff after 100% of the water has been removed by drying (100% - moisture). Drying causes delay in analysis turnaround so some labs dry to a certain moisture and perform an NIR scan to account for any residual moisture. Feed analysis reports typically report nutrients on an “as fed” or “as is” basis and on a “DM” basis. All dairy and beef nutrition is based around DM values due to the large variation in moisture content in ruminant feedstuffs. **Monitoring particle size is very important in a high corn silage ration.** In addition to looking at corn silage chop length (ideally about 15mm or about 26mm if using a Shreddigex® kernel processor), it is important to note the chop length and texture of the other forages in the TMR. Overlap of old-crop and new-crop corn silage feeding is helpful in minimizing cow adjustment at switch-over time. If possible, watch the feeder load the TMRR to observe both feed sequencing and length of time the corn silage has been exposed to mixing. Particle size and nutritional analysis of the TMR mix at feed delivery is often helpful to detect mixer abuse of fiber particle size as well as assess mixer consistency. Some herds feeding high corn silage rations have resorted to incorporating straw or poor quality hay in the ration to help build a mat-matrix and stimulate rumination. This approach often helps when forage particle size is not suitable. However, close attention to particle size of added straw is required to prevent sorting and acidosis episodes.

Nutritionists feeding high corn silage rations tend to feed slightly higher levels of NDF in the entire ration. A University of Minnesota review indicated 30% NDF in the ration can be fed in high corn silage rations without loss of milk production. In rations where physically effective NDF (pNDF) levels are tracked, most high corn silage herds prefer balancing at 22-23% pNDF which is at the high-end of typical pNDF recommendations. Most nutritionists prefer a minimum of 12-12.5 lbs of NDF from forage in high corn silage rations. This works out to about 22% of the ration NDF coming from forages. These fiber levels are often exceeded (24-25% total NDF from forages) if the corn silage is particularly high in NDF due to either impact of the growing season (drought), hybrid genetics or the use of inoculants proven to improve NDFD. Some nutritionists monitor the relationship of forage NDF to the level of rumen fermentable starch (determined by calculation or estimated via in situ or in vitro lab methods). Providing 1.25 pounds of NDF for each one pound of fermentable starch has proven a useful thumb rule, especially in rations containing very high NDFD corn silage.
Microbial Biomass Production (MBP, mg/g): A value reported on Fermentrics™ reports measured directly by analyzing the substrate that remains after 48-hour incubation with a NDF analysis (without amylase or sodium sulfite). The difference between the weight of the substrate before and after NDF analysis is the microbial biomass yield of the rumen fluid utilized for milk production.

Microbial Biomass Production

Microbial Biomass Production

Starch Digestibility (STRD, % starch): In vitro rumen fluid (or enzymatic starch digestibility): Sample grind size (e.g., 1-4mm) and incubation time (e.g., 2-10 hours, but most commonly 7 hours) differs by laboratory. This is only ruminal starch disappearance and does not account for post-ruminal starch digestion to determine total tract starch digestion.

Fecal Starch, %: Measurement of the % starch on a DM basis found in manure. Composite samples of fresh manure from 10-12 cows are submitted to the lab for starch analysis. Levels less than 3% fecal starch indicate excellent total tract (rumen + intestinal) starch digestion.

Carbohydrate Digestion Rates (Kd, %/hour): Carbohydrate pool digestion rates (Kd) are maximum rates of degradation per hour for the B (starch), B (soluble fiber) and B (NDF) carbohydrate pools as defined by models like CNDFP or CPM. Some laboratories publish Kd values for the B3 (NDF) pool by employing published equations from Cornell University utilizing single time point NDFD values (e.g. 24, 30 or 48-hour), NDF and lignin quantity and an assumed digestion lag value (e.g. 6 hours). Fermentrics™ reports use gas production methods to directly measure digestion rates for both fast (primarily starch) and slow (primarily fiber) pool nutrients. Curve peeling techniques and published equations are used to estimate the carbohydrate pool Kd values.

Sugar, %: Sometimes called water soluble carbohydrates (WSC). Sample incubated with water in a 40°C bath and measured by analyzing the substrate that remains after 24 hours. Fermentrics™ recommends waiting not less than 24 hours for this analysis.

Neutral Detergent Fiber (%aNDF): Neutral Detergent Fiber (%aNDF) is reported as a % of DM (not as a % of the NDF) with typical rumen retention times of either 24, 30, 120 or 240 hours. uNDF improves predictions of dry matter intake and rumen function (e.g. rumen microbial yield).

EXAMPLE OF A TMR FERMENTRICS® REPORT

TMR
Description: 4882 Origin: Pioneer
Sample #: 81505 Run Date: Aug 22 2016

FEED TYPE

<table>
<thead>
<tr>
<th>Alfalfa hay or haylage</th>
<th>Corn silage</th>
<th>Sorghum, sudan or small-grain hay or silage</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 13</td>
<td>18</td>
<td>< 9</td>
</tr>
</tbody>
</table>

Source: Dr. Rick Grant, W.H. Miner Institute

Nonfibrous Carbohydrate (% NFC): An estimate of the readily available carbohydrates (primarily starch and sugars). Calculated from one of the following equations: NFC = 100% - (CP% + NDF% + EE% + Ash %) or, if corrected for NDICP, NFC = 100% - (CP% + NDICP% + EED% + Ash %) + (CP% + NDICP% + EED% + Ash %). Since NFC is calculated by subtraction, the result includes the additive errors of each component, particularly the NDF procedure. NFC and nonstructural carbohydrates (NSC) are not interchangeable, especially in forages, with much of the difference being pectins and organic acids found in NFC but not NSC.

Nonstructural Carbohydrates (%NSC): An enzymatic method where all constituents are analyzed to estimate the sugars, starch, organic acids, and other reserve carbohydrates such as fructans. It is a lower value than NFC because NFC contains compounds other than starch and sugars. NFC and NSC are not interchangeable, especially in forages, with much of the difference being pectins and organic acids found in NFC but not NSC.

Acid Detergent Fiber (%ADF): Residue remaining after boiling sample in acid detergent solution. ADF contains cellulose, lignin, and silica, but not hemicellulose.
Typically not run unless requested. Might be worth requesting on hay/haylages if high inclusion rates, pushing upper limits of total ration NDF quantity and ash levels in sample are high (>12%).

What was required in the Cornell Model prior to the release of V 6.0. What most labs, especially in the Midwest, have been running since early 90’s when Mertens started promoting his method although not all labs use the “a”.

NO amylase
NO Na sulfite
amylase
Na sulfite
amylase
Na sulfite
Ash free

High Grain Corn Silage
37.7
38.1
36.0
35.2

What was required in the Cornell Model prior to the release of V 6.0.

What most labs, especially in the Midwest, have been running since early 90’s when Mertens started promoting his method although not all labs use the “a”.

NDF, as %NDF: A measurement of the NDF digestibility typically measured by in vitro incubations with rumen fluid and buffers or in situ by hanging samples in fistulated animals. Grind size of sample (finer grind will generate higher values) and incubation times (12, 24, 30, 48-hour) vary by laboratory. Some labs report dNDF which is the portion of the neutral detergent fiber digested by animals at a specified level of feed intake, expressed as a percent of the dry matter. NDF = dNDF/NDF x 100.

Physically Effective NDF (%NDF, %DM): An estimate of the coarse portion of the fiber believed effective in stimulating chewing activity and salivary buffer production to increased rumen pH. It is calculated by dry sieving the sample for ten minutes and taking the proportion of the dry matter retained on a 1.18mm sieve (termed the pe factor) multiplied by the NDF content of the sample.

Lignin: Sometimes called acid detergent lignin (AD-lignin). It is the indigestible plant component (chain of phenyl propane units), giving plant cell walls strength and water impermeability. High levels of lignin tend to reduce digestibility within a plant species. There are two methods of measuring lignin in acid detergent fiber: sulfuric acid lignin and permanganate lignin. Permanganate lignin is a larger value than sulfuric lignin for most feeds.

Total Tract NDF Digestibility (%TNDFD, %NDF): An in vitro method that measures NDFD and uNDF (at 24, 30 and 48 hours) in standardized rumen fluid with incorporating rate (Kd) of fiber digestion, the amount of potentially digested NDF (pNDF), rate of feed passage (Kp) in high-producing dairy cows and hindgut fiber digestion to provide a total tract estimate of NDF digestibility.

Crude Fat, %: An estimate of the fat content of feeds determined by ether extraction; sometimes termed ether extract (EE). Crude fat contains true fat (triglycerides) as well as alcohols, waxes, terpenes, steroids, pigments, ester, aldehydes and other lipids.

Ash %: the residue remaining after burning sample at 550ºC as an estimate of total mineral content.

Minerals: Macro minerals (e.g. calcium, phosphorus, potassium, magnesium, sodium, sulfur) are reported as a percent and trace minerals (e.g. copper, iron, manganese, zinc) are reported as parts per million (ppm).

Relative Feed Value (RFV): An index that combines factors affecting forage intake and digestibility allowing for relative comparisons of legume, grass and legume/grass forages (not corn silage). RFV is used to determine the relative value for marketing purposes. It is calculated as: RFV = (DMI, % of body weight) / 1.29 where: DMI is dry matter intake (% of body weight) calculated as 120/(NDF, %DM) and DDM is digestible dry matter calculated as 88.9–(0.779 x ADF, %DM).
Relative Feed Quality (RFQ): An index which incorporates NDFD to more accurately compare potential animal performance when fed legume, grass and legume/grass forages (not corn silage). It is based on the digestibility of the forage dry matter and how much the cow can eat based on filling capacity. It is calculated as: RFQ = (DMI, % of BW) * (TDN, % of DM) / 1.23. See page 96 for calculation examples.

Milk per Ton, lbs/ton: A corn silage or alfalfa index that estimates the pounds of milk produced per dry matter ton of forage based on the University of Wisconsin MIlK2006 decision aid.

Milk per Acre, lbs/acre: A corn silage or alfalfa index that estimates the pounds of milk produced per acre from the total yield of forage dry matter based on the University of Wisconsin MIlK2006 decision aid.

Energy Calculations: Most labs report calculated values for total digestible nutrients (TDN, %), net energy lactation (NEL, Mcal/lb), net energy maintenance (NEM, Mcal/lb), net energy gain (NEG, Mcal/lb). There are several different equations that can be used for each of these energy values, so it is best to source the equations being used from the individual laboratories.

Fermentation Profiles: Typical silage fermentation analysis will include levels of volatile fatty acids (acetic, propionic, 1,2 propanediol, isobutyric, butyric) along with pH, lactic acid, and occasionally ammonia-N and ethanol.

NOTES
Suggested Price $25.00 USD

www.pioneer.com/silagezone

@PioneerForage

PIONEER® brand products are provided subject to the terms and conditions of purchase which are part of the labeling and purchase documents. ®, TM, SM Trademarks and service marks of DuPont, Pioneer or their respective owners. © 2017 PHII.
17D-1144